Loading…
Applied Cavity Perturbation Used for Frequency Identification of Channel Ports in Manifold-Coupled Multiplexers
We investigate a practical technique for deembedding the channel filter S-parameters of manifold-coupled multiplexers (MUXs), without detaching filters from the manifold. The method is applicable for MUXs with an arbitrary number of channels and can be used for the device regardless of its bandwidth...
Saved in:
Published in: | International journal of RF and microwave computer-aided engineering 2023-11, Vol.2023, p.1-8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate a practical technique for deembedding the channel filter S-parameters of manifold-coupled multiplexers (MUXs), without detaching filters from the manifold. The method is applicable for MUXs with an arbitrary number of channels and can be used for the device regardless of its bandwidth, guard band, or loss of filters. We reconfigure the N-port MUX to two simpler networks cascaded to each other. We assume that the manifold response is unknown and use the idea of applied perturbation on the channel filter, and then by comparing the response of the overall cascaded network, before and after the perturbation, we approximate the channel port response. The technique is useful in fast detecting the unexpectedly detuned channels or likely faults in the device without unnecessary plugging/unplugging; it is also useful in roughly tuning of the channel filers at the early stage of MUX tuning. The technique can be easily traced by the telecommunication community. |
---|---|
ISSN: | 1096-4290 1099-047X |
DOI: | 10.1155/2023/8302207 |