Loading…

Optimal Routes to Ultrafast Polarization Reversal in Ferroelectric LiNbO3

We use the frozen phonon method to calculate the anharmonic potential energy surface and to model the ultrafast ferroelectric polarization reversal in LiNbO3 driven by intense pulses of THz light. Before stable switching of the polarization occurs, there exists a region of excitation field-strengths...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-12
Main Authors: R Tanner Hardy, Rosenbrock, Conrad, Hart, Gus L W, Johnson, Jeremy A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator R Tanner Hardy
Rosenbrock, Conrad
Hart, Gus L W
Johnson, Jeremy A
description We use the frozen phonon method to calculate the anharmonic potential energy surface and to model the ultrafast ferroelectric polarization reversal in LiNbO3 driven by intense pulses of THz light. Before stable switching of the polarization occurs, there exists a region of excitation field-strengths where transient switching can occur, as observed experimentally [Physical Review Letters 118, 197601 (2017)]. By varying the excitation frequency from 4 to 20 THz, our modeling suggests that more efficient, permanent polarization switching can occur by directly exciting the soft mode at 7 THz, compared to nonlinear phononic-induced switching driven by exciting a high frequency mode at 18 THz. We also show that neglecting anharmonic coupling pathways in the modeled experiment can lead to significant differences in the modeled switching field strengths.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900438563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900438563</sourcerecordid><originalsourceid>FETCH-proquest_journals_29004385633</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadhbU5s3MkBZEhdZYlnzBZzr59dujX56Ef0Ok9vM-MRVKpTZKnUi5YHEInhJDZVmqtInYqB7JP43jlR4LAyfO7IzStCcSv3hm0H0PW97yCN2CYpO15AYgeHDSEtuFne3mUasXmrXEB4l-XbF0cbvtjMqB_jRCo7vyI_bRquRMiVbnOlPpPfQGQ1TxW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900438563</pqid></control><display><type>article</type><title>Optimal Routes to Ultrafast Polarization Reversal in Ferroelectric LiNbO3</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>R Tanner Hardy ; Rosenbrock, Conrad ; Hart, Gus L W ; Johnson, Jeremy A</creator><creatorcontrib>R Tanner Hardy ; Rosenbrock, Conrad ; Hart, Gus L W ; Johnson, Jeremy A</creatorcontrib><description>We use the frozen phonon method to calculate the anharmonic potential energy surface and to model the ultrafast ferroelectric polarization reversal in LiNbO3 driven by intense pulses of THz light. Before stable switching of the polarization occurs, there exists a region of excitation field-strengths where transient switching can occur, as observed experimentally [Physical Review Letters 118, 197601 (2017)]. By varying the excitation frequency from 4 to 20 THz, our modeling suggests that more efficient, permanent polarization switching can occur by directly exciting the soft mode at 7 THz, compared to nonlinear phononic-induced switching driven by exciting a high frequency mode at 18 THz. We also show that neglecting anharmonic coupling pathways in the modeled experiment can lead to significant differences in the modeled switching field strengths.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anharmonicity ; Excitation ; Ferroelectric materials ; Ferroelectricity ; Lithium niobates ; Polarization ; Potential energy ; Switching</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2900438563?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>R Tanner Hardy</creatorcontrib><creatorcontrib>Rosenbrock, Conrad</creatorcontrib><creatorcontrib>Hart, Gus L W</creatorcontrib><creatorcontrib>Johnson, Jeremy A</creatorcontrib><title>Optimal Routes to Ultrafast Polarization Reversal in Ferroelectric LiNbO3</title><title>arXiv.org</title><description>We use the frozen phonon method to calculate the anharmonic potential energy surface and to model the ultrafast ferroelectric polarization reversal in LiNbO3 driven by intense pulses of THz light. Before stable switching of the polarization occurs, there exists a region of excitation field-strengths where transient switching can occur, as observed experimentally [Physical Review Letters 118, 197601 (2017)]. By varying the excitation frequency from 4 to 20 THz, our modeling suggests that more efficient, permanent polarization switching can occur by directly exciting the soft mode at 7 THz, compared to nonlinear phononic-induced switching driven by exciting a high frequency mode at 18 THz. We also show that neglecting anharmonic coupling pathways in the modeled experiment can lead to significant differences in the modeled switching field strengths.</description><subject>Anharmonicity</subject><subject>Excitation</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Lithium niobates</subject><subject>Polarization</subject><subject>Potential energy</subject><subject>Switching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadhbU5s3MkBZEhdZYlnzBZzr59dujX56Ef0Ok9vM-MRVKpTZKnUi5YHEInhJDZVmqtInYqB7JP43jlR4LAyfO7IzStCcSv3hm0H0PW97yCN2CYpO15AYgeHDSEtuFne3mUasXmrXEB4l-XbF0cbvtjMqB_jRCo7vyI_bRquRMiVbnOlPpPfQGQ1TxW</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>R Tanner Hardy</creator><creator>Rosenbrock, Conrad</creator><creator>Hart, Gus L W</creator><creator>Johnson, Jeremy A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231215</creationdate><title>Optimal Routes to Ultrafast Polarization Reversal in Ferroelectric LiNbO3</title><author>R Tanner Hardy ; Rosenbrock, Conrad ; Hart, Gus L W ; Johnson, Jeremy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29004385633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anharmonicity</topic><topic>Excitation</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Lithium niobates</topic><topic>Polarization</topic><topic>Potential energy</topic><topic>Switching</topic><toplevel>online_resources</toplevel><creatorcontrib>R Tanner Hardy</creatorcontrib><creatorcontrib>Rosenbrock, Conrad</creatorcontrib><creatorcontrib>Hart, Gus L W</creatorcontrib><creatorcontrib>Johnson, Jeremy A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R Tanner Hardy</au><au>Rosenbrock, Conrad</au><au>Hart, Gus L W</au><au>Johnson, Jeremy A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimal Routes to Ultrafast Polarization Reversal in Ferroelectric LiNbO3</atitle><jtitle>arXiv.org</jtitle><date>2023-12-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We use the frozen phonon method to calculate the anharmonic potential energy surface and to model the ultrafast ferroelectric polarization reversal in LiNbO3 driven by intense pulses of THz light. Before stable switching of the polarization occurs, there exists a region of excitation field-strengths where transient switching can occur, as observed experimentally [Physical Review Letters 118, 197601 (2017)]. By varying the excitation frequency from 4 to 20 THz, our modeling suggests that more efficient, permanent polarization switching can occur by directly exciting the soft mode at 7 THz, compared to nonlinear phononic-induced switching driven by exciting a high frequency mode at 18 THz. We also show that neglecting anharmonic coupling pathways in the modeled experiment can lead to significant differences in the modeled switching field strengths.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2900438563
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Anharmonicity
Excitation
Ferroelectric materials
Ferroelectricity
Lithium niobates
Polarization
Potential energy
Switching
title Optimal Routes to Ultrafast Polarization Reversal in Ferroelectric LiNbO3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimal%20Routes%20to%20Ultrafast%20Polarization%20Reversal%20in%20Ferroelectric%20LiNbO3&rft.jtitle=arXiv.org&rft.au=R%20Tanner%20Hardy&rft.date=2023-12-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2900438563%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29004385633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2900438563&rft_id=info:pmid/&rfr_iscdi=true