Loading…
Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception inf...
Saved in:
Published in: | arXiv.org 2024-04 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yao, Shanliang Guan, Runwei Peng, Zitian Xu, Chenhang Shi, Yilu Ding, Weiping Eng Gee Lim Yue, Yong Seo, Hyungjoon Man, Ka Lok Ma, Jieming Zhu, Xiaohui Yue, Yutao |
description | With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900438698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900438698</sourcerecordid><originalsourceid>FETCH-proquest_journals_29004386983</originalsourceid><addsrcrecordid>eNqNi70OgjAYABsTE4nyDk2cSWoLCG4EMM7EnTTxU0ugH_YHfXw7-ABON9zdikRciENSpJxvSGztwBjj-ZFnmYhI137mEY3SD9rJmzS0kU7SDmYDFrSTTqG2VGlaeYcaJ_SWNkYtYTjRitY4hfIJ2qoFwrYoeO_I-i5HC_GPW7I_t9f6kswGXx6s6wf0RgfV85KxVBR5WYj_qi__vD_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900438698</pqid></control><display><type>article</type><title>Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yao, Shanliang ; Guan, Runwei ; Peng, Zitian ; Xu, Chenhang ; Shi, Yilu ; Ding, Weiping ; Eng Gee Lim ; Yue, Yong ; Seo, Hyungjoon ; Man, Ka Lok ; Ma, Jieming ; Zhu, Xiaohui ; Yue, Yutao</creator><creatorcontrib>Yao, Shanliang ; Guan, Runwei ; Peng, Zitian ; Xu, Chenhang ; Shi, Yilu ; Ding, Weiping ; Eng Gee Lim ; Yue, Yong ; Seo, Hyungjoon ; Man, Ka Lok ; Ma, Jieming ; Zhu, Xiaohui ; Yue, Yutao</creatorcontrib><description>With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Intelligent vehicles ; Perception ; Radar data ; Radar measurement ; Radar signatures ; Representations ; Sensors ; Signal processing ; Tensors</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2900438698?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Yao, Shanliang</creatorcontrib><creatorcontrib>Guan, Runwei</creatorcontrib><creatorcontrib>Peng, Zitian</creatorcontrib><creatorcontrib>Xu, Chenhang</creatorcontrib><creatorcontrib>Shi, Yilu</creatorcontrib><creatorcontrib>Ding, Weiping</creatorcontrib><creatorcontrib>Eng Gee Lim</creatorcontrib><creatorcontrib>Yue, Yong</creatorcontrib><creatorcontrib>Seo, Hyungjoon</creatorcontrib><creatorcontrib>Man, Ka Lok</creatorcontrib><creatorcontrib>Ma, Jieming</creatorcontrib><creatorcontrib>Zhu, Xiaohui</creatorcontrib><creatorcontrib>Yue, Yutao</creatorcontrib><title>Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review</title><title>arXiv.org</title><description>With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.</description><subject>Datasets</subject><subject>Intelligent vehicles</subject><subject>Perception</subject><subject>Radar data</subject><subject>Radar measurement</subject><subject>Radar signatures</subject><subject>Representations</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi70OgjAYABsTE4nyDk2cSWoLCG4EMM7EnTTxU0ugH_YHfXw7-ABON9zdikRciENSpJxvSGztwBjj-ZFnmYhI137mEY3SD9rJmzS0kU7SDmYDFrSTTqG2VGlaeYcaJ_SWNkYtYTjRitY4hfIJ2qoFwrYoeO_I-i5HC_GPW7I_t9f6kswGXx6s6wf0RgfV85KxVBR5WYj_qi__vD_k</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>Yao, Shanliang</creator><creator>Guan, Runwei</creator><creator>Peng, Zitian</creator><creator>Xu, Chenhang</creator><creator>Shi, Yilu</creator><creator>Ding, Weiping</creator><creator>Eng Gee Lim</creator><creator>Yue, Yong</creator><creator>Seo, Hyungjoon</creator><creator>Man, Ka Lok</creator><creator>Ma, Jieming</creator><creator>Zhu, Xiaohui</creator><creator>Yue, Yutao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240419</creationdate><title>Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review</title><author>Yao, Shanliang ; Guan, Runwei ; Peng, Zitian ; Xu, Chenhang ; Shi, Yilu ; Ding, Weiping ; Eng Gee Lim ; Yue, Yong ; Seo, Hyungjoon ; Man, Ka Lok ; Ma, Jieming ; Zhu, Xiaohui ; Yue, Yutao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29004386983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Intelligent vehicles</topic><topic>Perception</topic><topic>Radar data</topic><topic>Radar measurement</topic><topic>Radar signatures</topic><topic>Representations</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yao, Shanliang</creatorcontrib><creatorcontrib>Guan, Runwei</creatorcontrib><creatorcontrib>Peng, Zitian</creatorcontrib><creatorcontrib>Xu, Chenhang</creatorcontrib><creatorcontrib>Shi, Yilu</creatorcontrib><creatorcontrib>Ding, Weiping</creatorcontrib><creatorcontrib>Eng Gee Lim</creatorcontrib><creatorcontrib>Yue, Yong</creatorcontrib><creatorcontrib>Seo, Hyungjoon</creatorcontrib><creatorcontrib>Man, Ka Lok</creatorcontrib><creatorcontrib>Ma, Jieming</creatorcontrib><creatorcontrib>Zhu, Xiaohui</creatorcontrib><creatorcontrib>Yue, Yutao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Shanliang</au><au>Guan, Runwei</au><au>Peng, Zitian</au><au>Xu, Chenhang</au><au>Shi, Yilu</au><au>Ding, Weiping</au><au>Eng Gee Lim</au><au>Yue, Yong</au><au>Seo, Hyungjoon</au><au>Man, Ka Lok</au><au>Ma, Jieming</au><au>Zhu, Xiaohui</au><au>Yue, Yutao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review</atitle><jtitle>arXiv.org</jtitle><date>2024-04-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2900438698 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Datasets Intelligent vehicles Perception Radar data Radar measurement Radar signatures Representations Sensors Signal processing Tensors |
title | Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Exploring%20Radar%20Data%20Representations%20in%20Autonomous%20Driving:%20A%20Comprehensive%20Review&rft.jtitle=arXiv.org&rft.au=Yao,%20Shanliang&rft.date=2024-04-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2900438698%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29004386983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2900438698&rft_id=info:pmid/&rfr_iscdi=true |