Loading…
Addressing non-normality in multivariate analysis using the t-distribution
The main aim of this paper is to propose a set of tools for assessing non-normality taking into consideration the class of multivariate t -distributions. Assuming second moment existence, we consider a reparameterized version of the usual t distribution, so that the scale matrix coincides with covar...
Saved in:
Published in: | Advances in statistical analysis : AStA : a journal of the German Statistical Society 2023-12, Vol.107 (4), p.785-813 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main aim of this paper is to propose a set of tools for assessing non-normality taking into consideration the class of multivariate
t
-distributions. Assuming second moment existence, we consider a reparameterized version of the usual
t
distribution, so that the scale matrix coincides with covariance matrix of the distribution. We use the local influence procedure and the Kullback–Leibler divergence measure to propose quantitative methods to evaluate deviations from the normality assumption. In addition, the possible non-normality due to the presence of both skewness and heavy tails is also explored. Our findings based on two real datasets are complemented by a simulation study to evaluate the performance of the proposed methodology on finite samples. |
---|---|
ISSN: | 1863-8171 1863-818X |
DOI: | 10.1007/s10182-022-00468-2 |