Loading…

Direct Numerical Solutions to Stochastic Differential Equations with Multiplicative Noise

Inspired by path-integral solutions to the quantum relaxation problem, we develop a numerical method to solve classical stochastic differential equations with multiplicative noise that avoids averaging over trajectories. To test the method, we simulate the dynamics of a classical oscillator multipli...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-12
Main Authors: Grimm, Ryan T, Eaves, Joel D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Grimm, Ryan T
Eaves, Joel D
description Inspired by path-integral solutions to the quantum relaxation problem, we develop a numerical method to solve classical stochastic differential equations with multiplicative noise that avoids averaging over trajectories. To test the method, we simulate the dynamics of a classical oscillator multiplicatively coupled to non-Markovian noise. When accelerated using tensor factorization techniques, it accurately estimates the transition into the bifurcation regime of the oscillator and outperforms trajectory-averaging simulations with a computational cost that is orders of magnitude lower.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900746801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900746801</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007468013</originalsourceid><addsrcrecordid>eNqNy70KwjAYheEgCBbtPQScC2n662wrLnapi1MJIaVfiU2bfNHbt6AX4HSG9zkbEvAkiaMy5XxHQudGxhjPC55lSUAeFVglkTb-qSxIoWlrtEcwk6NoaItGDsIhSFpB3yurJoQV1YsXX_QGHOjNa4RZr3-El6KNAacOZNsL7VT42z05Xur7-RrN1ixeOexG4-20po6fGCvSvGRx8p_6AExkQxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900746801</pqid></control><display><type>article</type><title>Direct Numerical Solutions to Stochastic Differential Equations with Multiplicative Noise</title><source>Publicly Available Content Database</source><creator>Grimm, Ryan T ; Eaves, Joel D</creator><creatorcontrib>Grimm, Ryan T ; Eaves, Joel D</creatorcontrib><description>Inspired by path-integral solutions to the quantum relaxation problem, we develop a numerical method to solve classical stochastic differential equations with multiplicative noise that avoids averaging over trajectories. To test the method, we simulate the dynamics of a classical oscillator multiplicatively coupled to non-Markovian noise. When accelerated using tensor factorization techniques, it accurately estimates the transition into the bifurcation regime of the oscillator and outperforms trajectory-averaging simulations with a computational cost that is orders of magnitude lower.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Numerical methods ; Oscillators ; Tensors</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2900746801?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Grimm, Ryan T</creatorcontrib><creatorcontrib>Eaves, Joel D</creatorcontrib><title>Direct Numerical Solutions to Stochastic Differential Equations with Multiplicative Noise</title><title>arXiv.org</title><description>Inspired by path-integral solutions to the quantum relaxation problem, we develop a numerical method to solve classical stochastic differential equations with multiplicative noise that avoids averaging over trajectories. To test the method, we simulate the dynamics of a classical oscillator multiplicatively coupled to non-Markovian noise. When accelerated using tensor factorization techniques, it accurately estimates the transition into the bifurcation regime of the oscillator and outperforms trajectory-averaging simulations with a computational cost that is orders of magnitude lower.</description><subject>Differential equations</subject><subject>Numerical methods</subject><subject>Oscillators</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy70KwjAYheEgCBbtPQScC2n662wrLnapi1MJIaVfiU2bfNHbt6AX4HSG9zkbEvAkiaMy5XxHQudGxhjPC55lSUAeFVglkTb-qSxIoWlrtEcwk6NoaItGDsIhSFpB3yurJoQV1YsXX_QGHOjNa4RZr3-El6KNAacOZNsL7VT42z05Xur7-RrN1ixeOexG4-20po6fGCvSvGRx8p_6AExkQxc</recordid><startdate>20231209</startdate><enddate>20231209</enddate><creator>Grimm, Ryan T</creator><creator>Eaves, Joel D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231209</creationdate><title>Direct Numerical Solutions to Stochastic Differential Equations with Multiplicative Noise</title><author>Grimm, Ryan T ; Eaves, Joel D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007468013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Numerical methods</topic><topic>Oscillators</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Grimm, Ryan T</creatorcontrib><creatorcontrib>Eaves, Joel D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, Ryan T</au><au>Eaves, Joel D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Direct Numerical Solutions to Stochastic Differential Equations with Multiplicative Noise</atitle><jtitle>arXiv.org</jtitle><date>2023-12-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Inspired by path-integral solutions to the quantum relaxation problem, we develop a numerical method to solve classical stochastic differential equations with multiplicative noise that avoids averaging over trajectories. To test the method, we simulate the dynamics of a classical oscillator multiplicatively coupled to non-Markovian noise. When accelerated using tensor factorization techniques, it accurately estimates the transition into the bifurcation regime of the oscillator and outperforms trajectory-averaging simulations with a computational cost that is orders of magnitude lower.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2900746801
source Publicly Available Content Database
subjects Differential equations
Numerical methods
Oscillators
Tensors
title Direct Numerical Solutions to Stochastic Differential Equations with Multiplicative Noise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Direct%20Numerical%20Solutions%20to%20Stochastic%20Differential%20Equations%20with%20Multiplicative%20Noise&rft.jtitle=arXiv.org&rft.au=Grimm,%20Ryan%20T&rft.date=2023-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2900746801%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29007468013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2900746801&rft_id=info:pmid/&rfr_iscdi=true