Loading…

Scalar fields in Bonnor-Melvin Universe with potential: A study of dynamics of spin-0 particles-antiparticles

This research focus on the investigation of relativistic quantum dynamics of spin0 scalar particles/fields through the utilization of the Klein-Gordon (KG) equation within the framework of an electrovacuum space-time in the presence of an external scalar potential. Specifically, we focus on a cylind...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-05
Main Authors: Faizuddin Ahmed, Abdelmalek Bouzenada
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research focus on the investigation of relativistic quantum dynamics of spin0 scalar particles/fields through the utilization of the Klein-Gordon (KG) equation within the framework of an electrovacuum space-time in the presence of an external scalar potential. Specifically, we focus on a cylindrical symmetric Bonnor-Melvin magnetic universe with a cosmological constant, where the magnetic field aligns along the symmetry axis direction. We derive the radial wave equation of the KG-equation by considering a Cornell-type scalar potential in the background of magnetic universe and successfully obtain an analytical eigenvalue solution for spin-0 quantum system. Notably, our findings reveal that both the energy spectrum and the corresponding radial wave function are significantly influenced by the presence of the cosmological constant, the topology parameter of the space-time geometry, which induces a deficit in the angular coordinates, and the potential parameters.
ISSN:2331-8422
DOI:10.48550/arxiv.2312.06612