Loading…
GEMINI: Controlling the Sentence-level Writing Style for Abstractive Text Summarization
Human experts write summaries using different techniques, including extracting a sentence from the document and rewriting it, or fusing various information from the document to abstract it. These techniques are flexible and thus difficult to be imitated by any single method. To address this issue, w...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bao, Guangsheng Ou, Zebin Zhang, Yue |
description | Human experts write summaries using different techniques, including extracting a sentence from the document and rewriting it, or fusing various information from the document to abstract it. These techniques are flexible and thus difficult to be imitated by any single method. To address this issue, we propose an adaptive model, GEMINI, that integrates a rewriter and a generator to mimic the sentence rewriting and abstracting techniques, respectively. GEMINI adaptively chooses to rewrite a specific document sentence or generate a summary sentence from scratch. Experiments demonstrate that our adaptive approach outperforms the pure abstractive and rewriting baselines on three benchmark datasets, achieving the best results on WikiHow. Interestingly, empirical results show that the human summary styles of summary sentences are consistently predictable given their context. We release our code and model at \url{https://github.com/baoguangsheng/gemini}. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900776594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900776594</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007765943</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScCzG9qZuUehl0aaFjieVUI2miyamoT6-CD-D0D98_IB4Pw1kwjzgfEd-5C2OMJymP49Aj1Sbf7w67Jc2MRmuUkvpE8Qy0AI2gGwgU3EHRykr8UoFPBbQ1lq6ODq1oUN6BlvBAWvRdJ6x8CZRGT8iwFcqB_-uYTNd5mW2DqzW3HhzWF9Nb_aGaLxhL0yReROF_1xsIxUFj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900776594</pqid></control><display><type>article</type><title>GEMINI: Controlling the Sentence-level Writing Style for Abstractive Text Summarization</title><source>Publicly Available Content Database</source><creator>Bao, Guangsheng ; Ou, Zebin ; Zhang, Yue</creator><creatorcontrib>Bao, Guangsheng ; Ou, Zebin ; Zhang, Yue</creatorcontrib><description>Human experts write summaries using different techniques, including extracting a sentence from the document and rewriting it, or fusing various information from the document to abstract it. These techniques are flexible and thus difficult to be imitated by any single method. To address this issue, we propose an adaptive model, GEMINI, that integrates a rewriter and a generator to mimic the sentence rewriting and abstracting techniques, respectively. GEMINI adaptively chooses to rewrite a specific document sentence or generate a summary sentence from scratch. Experiments demonstrate that our adaptive approach outperforms the pure abstractive and rewriting baselines on three benchmark datasets, achieving the best results on WikiHow. Interestingly, empirical results show that the human summary styles of summary sentences are consistently predictable given their context. We release our code and model at \url{https://github.com/baoguangsheng/gemini}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Documents</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2900776594?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Bao, Guangsheng</creatorcontrib><creatorcontrib>Ou, Zebin</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><title>GEMINI: Controlling the Sentence-level Writing Style for Abstractive Text Summarization</title><title>arXiv.org</title><description>Human experts write summaries using different techniques, including extracting a sentence from the document and rewriting it, or fusing various information from the document to abstract it. These techniques are flexible and thus difficult to be imitated by any single method. To address this issue, we propose an adaptive model, GEMINI, that integrates a rewriter and a generator to mimic the sentence rewriting and abstracting techniques, respectively. GEMINI adaptively chooses to rewrite a specific document sentence or generate a summary sentence from scratch. Experiments demonstrate that our adaptive approach outperforms the pure abstractive and rewriting baselines on three benchmark datasets, achieving the best results on WikiHow. Interestingly, empirical results show that the human summary styles of summary sentences are consistently predictable given their context. We release our code and model at \url{https://github.com/baoguangsheng/gemini}.</description><subject>Documents</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScCzG9qZuUehl0aaFjieVUI2miyamoT6-CD-D0D98_IB4Pw1kwjzgfEd-5C2OMJymP49Aj1Sbf7w67Jc2MRmuUkvpE8Qy0AI2gGwgU3EHRykr8UoFPBbQ1lq6ODq1oUN6BlvBAWvRdJ6x8CZRGT8iwFcqB_-uYTNd5mW2DqzW3HhzWF9Nb_aGaLxhL0yReROF_1xsIxUFj</recordid><startdate>20231209</startdate><enddate>20231209</enddate><creator>Bao, Guangsheng</creator><creator>Ou, Zebin</creator><creator>Zhang, Yue</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231209</creationdate><title>GEMINI: Controlling the Sentence-level Writing Style for Abstractive Text Summarization</title><author>Bao, Guangsheng ; Ou, Zebin ; Zhang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007765943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Documents</topic><toplevel>online_resources</toplevel><creatorcontrib>Bao, Guangsheng</creatorcontrib><creatorcontrib>Ou, Zebin</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Guangsheng</au><au>Ou, Zebin</au><au>Zhang, Yue</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GEMINI: Controlling the Sentence-level Writing Style for Abstractive Text Summarization</atitle><jtitle>arXiv.org</jtitle><date>2023-12-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Human experts write summaries using different techniques, including extracting a sentence from the document and rewriting it, or fusing various information from the document to abstract it. These techniques are flexible and thus difficult to be imitated by any single method. To address this issue, we propose an adaptive model, GEMINI, that integrates a rewriter and a generator to mimic the sentence rewriting and abstracting techniques, respectively. GEMINI adaptively chooses to rewrite a specific document sentence or generate a summary sentence from scratch. Experiments demonstrate that our adaptive approach outperforms the pure abstractive and rewriting baselines on three benchmark datasets, achieving the best results on WikiHow. Interestingly, empirical results show that the human summary styles of summary sentences are consistently predictable given their context. We release our code and model at \url{https://github.com/baoguangsheng/gemini}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2900776594 |
source | Publicly Available Content Database |
subjects | Documents |
title | GEMINI: Controlling the Sentence-level Writing Style for Abstractive Text Summarization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GEMINI:%20Controlling%20the%20Sentence-level%20Writing%20Style%20for%20Abstractive%20Text%20Summarization&rft.jtitle=arXiv.org&rft.au=Bao,%20Guangsheng&rft.date=2023-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2900776594%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29007765943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2900776594&rft_id=info:pmid/&rfr_iscdi=true |