Loading…
Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems
Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converge...
Saved in:
Published in: | IEEE transactions on wireless communications 2023-12, Vol.22 (12), p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673 |
container_end_page | 1 |
container_issue | 12 |
container_start_page | 1 |
container_title | IEEE transactions on wireless communications |
container_volume | 22 |
creator | Liu, Xiangnan Zhang, Haijun Long, Keping Nallanathan, Arumugam Leung, Victor C. M. |
description | Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converged network architecture is proposed to coordinate interference in this paper. Each base station equips with the individual deep neural networks to allocate power and beamforming. On this basis, the interference management is transformed into a functional optimization with stochastic constraints. An unsupervised learning algorithm is proposed to allocate power for interference management. Furthermore, a transfer learning method is presented to obtain the interference management in terms of transmit beamforming. Finally, the distributed management is obtained from the local channel state information in the multi-cell scenario. Simulation results verify the effectiveness of the proposed unsupervised learning interference management method in the ISAC systems. |
doi_str_mv | 10.1109/TWC.2023.3269815 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901226392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10113889</ieee_id><sourcerecordid>2901226392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6xzx-JRxS-KhUxtBVj5CaXyhVxiu0g9d-T0A5MPuve5073EHLL6Iwxqh9Wn8UMKPAZB6VzJs_IhEmZpwAiPx9rrlIGmbokVyHsKGWZknJC2icborebPmKdrF3o9-h_bBg-CzTeWbdNms4ncxfRN-jRVZi8G2e22KKLiXV_ra03I79EF0bCuDopurbtna1MtJ1LlocQsQ3X5KIxXwFvTu-UrF-eV8Vbuvh4nRePi7QCDTEVqLWsKG4kp0oYqAUyQFUpUWsjgTNBZaUVzUBSmTEqmkYoQXMcTm9AZXxK7o9z97777jHEctf13g0rS9CUASiuYUjRY6ryXQgem3LvbWv8oWS0HKWWg9RylFqepA7I3RGxiPgvzhjPc81_AdLfc1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901226392</pqid></control><display><type>article</type><title>Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems</title><source>IEEE Xplore (Online service)</source><creator>Liu, Xiangnan ; Zhang, Haijun ; Long, Keping ; Nallanathan, Arumugam ; Leung, Victor C. M.</creator><creatorcontrib>Liu, Xiangnan ; Zhang, Haijun ; Long, Keping ; Nallanathan, Arumugam ; Leung, Victor C. M.</creatorcontrib><description>Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converged network architecture is proposed to coordinate interference in this paper. Each base station equips with the individual deep neural networks to allocate power and beamforming. On this basis, the interference management is transformed into a functional optimization with stochastic constraints. An unsupervised learning algorithm is proposed to allocate power for interference management. Furthermore, a transfer learning method is presented to obtain the interference management in terms of transmit beamforming. Finally, the distributed management is obtained from the local channel state information in the multi-cell scenario. Simulation results verify the effectiveness of the proposed unsupervised learning interference management method in the ISAC systems.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3269815</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Array signal processing ; Artificial neural networks ; Base stations ; Beamforming ; Communications systems ; Integrated sensing and communication ; Interference ; interference management ; Machine learning ; Radar ; Radio equipment ; Sensors ; Transfer learning ; Unsupervised learning</subject><ispartof>IEEE transactions on wireless communications, 2023-12, Vol.22 (12), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673</citedby><cites>FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673</cites><orcidid>0000-0001-8337-5884 ; 0000-0002-0094-8948 ; 0000-0001-6678-6075 ; 0000-0003-3529-2640 ; 0000-0002-0236-6482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10113889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Long, Keping</creatorcontrib><creatorcontrib>Nallanathan, Arumugam</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><title>Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converged network architecture is proposed to coordinate interference in this paper. Each base station equips with the individual deep neural networks to allocate power and beamforming. On this basis, the interference management is transformed into a functional optimization with stochastic constraints. An unsupervised learning algorithm is proposed to allocate power for interference management. Furthermore, a transfer learning method is presented to obtain the interference management in terms of transmit beamforming. Finally, the distributed management is obtained from the local channel state information in the multi-cell scenario. Simulation results verify the effectiveness of the proposed unsupervised learning interference management method in the ISAC systems.</description><subject>Algorithms</subject><subject>Array signal processing</subject><subject>Artificial neural networks</subject><subject>Base stations</subject><subject>Beamforming</subject><subject>Communications systems</subject><subject>Integrated sensing and communication</subject><subject>Interference</subject><subject>interference management</subject><subject>Machine learning</subject><subject>Radar</subject><subject>Radio equipment</subject><subject>Sensors</subject><subject>Transfer learning</subject><subject>Unsupervised learning</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6xzx-JRxS-KhUxtBVj5CaXyhVxiu0g9d-T0A5MPuve5073EHLL6Iwxqh9Wn8UMKPAZB6VzJs_IhEmZpwAiPx9rrlIGmbokVyHsKGWZknJC2icborebPmKdrF3o9-h_bBg-CzTeWbdNms4ncxfRN-jRVZi8G2e22KKLiXV_ra03I79EF0bCuDopurbtna1MtJ1LlocQsQ3X5KIxXwFvTu-UrF-eV8Vbuvh4nRePi7QCDTEVqLWsKG4kp0oYqAUyQFUpUWsjgTNBZaUVzUBSmTEqmkYoQXMcTm9AZXxK7o9z97777jHEctf13g0rS9CUASiuYUjRY6ryXQgem3LvbWv8oWS0HKWWg9RylFqepA7I3RGxiPgvzhjPc81_AdLfc1I</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Liu, Xiangnan</creator><creator>Zhang, Haijun</creator><creator>Long, Keping</creator><creator>Nallanathan, Arumugam</creator><creator>Leung, Victor C. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8337-5884</orcidid><orcidid>https://orcid.org/0000-0002-0094-8948</orcidid><orcidid>https://orcid.org/0000-0001-6678-6075</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid><orcidid>https://orcid.org/0000-0002-0236-6482</orcidid></search><sort><creationdate>20231201</creationdate><title>Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems</title><author>Liu, Xiangnan ; Zhang, Haijun ; Long, Keping ; Nallanathan, Arumugam ; Leung, Victor C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Array signal processing</topic><topic>Artificial neural networks</topic><topic>Base stations</topic><topic>Beamforming</topic><topic>Communications systems</topic><topic>Integrated sensing and communication</topic><topic>Interference</topic><topic>interference management</topic><topic>Machine learning</topic><topic>Radar</topic><topic>Radio equipment</topic><topic>Sensors</topic><topic>Transfer learning</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Long, Keping</creatorcontrib><creatorcontrib>Nallanathan, Arumugam</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangnan</au><au>Zhang, Haijun</au><au>Long, Keping</au><au>Nallanathan, Arumugam</au><au>Leung, Victor C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>22</volume><issue>12</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converged network architecture is proposed to coordinate interference in this paper. Each base station equips with the individual deep neural networks to allocate power and beamforming. On this basis, the interference management is transformed into a functional optimization with stochastic constraints. An unsupervised learning algorithm is proposed to allocate power for interference management. Furthermore, a transfer learning method is presented to obtain the interference management in terms of transmit beamforming. Finally, the distributed management is obtained from the local channel state information in the multi-cell scenario. Simulation results verify the effectiveness of the proposed unsupervised learning interference management method in the ISAC systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3269815</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8337-5884</orcidid><orcidid>https://orcid.org/0000-0002-0094-8948</orcidid><orcidid>https://orcid.org/0000-0001-6678-6075</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid><orcidid>https://orcid.org/0000-0002-0236-6482</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2023-12, Vol.22 (12), p.1-1 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_2901226392 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Array signal processing Artificial neural networks Base stations Beamforming Communications systems Integrated sensing and communication Interference interference management Machine learning Radar Radio equipment Sensors Transfer learning Unsupervised learning |
title | Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Unsupervised%20Learning%20for%20Interference%20Management%20in%20Integrated%20Sensing%20and%20Communication%20Systems&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Liu,%20Xiangnan&rft.date=2023-12-01&rft.volume=22&rft.issue=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3269815&rft_dat=%3Cproquest_cross%3E2901226392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901226392&rft_id=info:pmid/&rft_ieee_id=10113889&rfr_iscdi=true |