Loading…

Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems

Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converge...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2023-12, Vol.22 (12), p.1-1
Main Authors: Liu, Xiangnan, Zhang, Haijun, Long, Keping, Nallanathan, Arumugam, Leung, Victor C. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673
cites cdi_FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673
container_end_page 1
container_issue 12
container_start_page 1
container_title IEEE transactions on wireless communications
container_volume 22
creator Liu, Xiangnan
Zhang, Haijun
Long, Keping
Nallanathan, Arumugam
Leung, Victor C. M.
description Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converged network architecture is proposed to coordinate interference in this paper. Each base station equips with the individual deep neural networks to allocate power and beamforming. On this basis, the interference management is transformed into a functional optimization with stochastic constraints. An unsupervised learning algorithm is proposed to allocate power for interference management. Furthermore, a transfer learning method is presented to obtain the interference management in terms of transmit beamforming. Finally, the distributed management is obtained from the local channel state information in the multi-cell scenario. Simulation results verify the effectiveness of the proposed unsupervised learning interference management method in the ISAC systems.
doi_str_mv 10.1109/TWC.2023.3269815
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901226392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10113889</ieee_id><sourcerecordid>2901226392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6xzx-JRxS-KhUxtBVj5CaXyhVxiu0g9d-T0A5MPuve5073EHLL6Iwxqh9Wn8UMKPAZB6VzJs_IhEmZpwAiPx9rrlIGmbokVyHsKGWZknJC2icborebPmKdrF3o9-h_bBg-CzTeWbdNms4ncxfRN-jRVZi8G2e22KKLiXV_ra03I79EF0bCuDopurbtna1MtJ1LlocQsQ3X5KIxXwFvTu-UrF-eV8Vbuvh4nRePi7QCDTEVqLWsKG4kp0oYqAUyQFUpUWsjgTNBZaUVzUBSmTEqmkYoQXMcTm9AZXxK7o9z97777jHEctf13g0rS9CUASiuYUjRY6ryXQgem3LvbWv8oWS0HKWWg9RylFqepA7I3RGxiPgvzhjPc81_AdLfc1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901226392</pqid></control><display><type>article</type><title>Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems</title><source>IEEE Xplore (Online service)</source><creator>Liu, Xiangnan ; Zhang, Haijun ; Long, Keping ; Nallanathan, Arumugam ; Leung, Victor C. M.</creator><creatorcontrib>Liu, Xiangnan ; Zhang, Haijun ; Long, Keping ; Nallanathan, Arumugam ; Leung, Victor C. M.</creatorcontrib><description>Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converged network architecture is proposed to coordinate interference in this paper. Each base station equips with the individual deep neural networks to allocate power and beamforming. On this basis, the interference management is transformed into a functional optimization with stochastic constraints. An unsupervised learning algorithm is proposed to allocate power for interference management. Furthermore, a transfer learning method is presented to obtain the interference management in terms of transmit beamforming. Finally, the distributed management is obtained from the local channel state information in the multi-cell scenario. Simulation results verify the effectiveness of the proposed unsupervised learning interference management method in the ISAC systems.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3269815</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Array signal processing ; Artificial neural networks ; Base stations ; Beamforming ; Communications systems ; Integrated sensing and communication ; Interference ; interference management ; Machine learning ; Radar ; Radio equipment ; Sensors ; Transfer learning ; Unsupervised learning</subject><ispartof>IEEE transactions on wireless communications, 2023-12, Vol.22 (12), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673</citedby><cites>FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673</cites><orcidid>0000-0001-8337-5884 ; 0000-0002-0094-8948 ; 0000-0001-6678-6075 ; 0000-0003-3529-2640 ; 0000-0002-0236-6482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10113889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Long, Keping</creatorcontrib><creatorcontrib>Nallanathan, Arumugam</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><title>Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converged network architecture is proposed to coordinate interference in this paper. Each base station equips with the individual deep neural networks to allocate power and beamforming. On this basis, the interference management is transformed into a functional optimization with stochastic constraints. An unsupervised learning algorithm is proposed to allocate power for interference management. Furthermore, a transfer learning method is presented to obtain the interference management in terms of transmit beamforming. Finally, the distributed management is obtained from the local channel state information in the multi-cell scenario. Simulation results verify the effectiveness of the proposed unsupervised learning interference management method in the ISAC systems.</description><subject>Algorithms</subject><subject>Array signal processing</subject><subject>Artificial neural networks</subject><subject>Base stations</subject><subject>Beamforming</subject><subject>Communications systems</subject><subject>Integrated sensing and communication</subject><subject>Interference</subject><subject>interference management</subject><subject>Machine learning</subject><subject>Radar</subject><subject>Radio equipment</subject><subject>Sensors</subject><subject>Transfer learning</subject><subject>Unsupervised learning</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6xzx-JRxS-KhUxtBVj5CaXyhVxiu0g9d-T0A5MPuve5073EHLL6Iwxqh9Wn8UMKPAZB6VzJs_IhEmZpwAiPx9rrlIGmbokVyHsKGWZknJC2icborebPmKdrF3o9-h_bBg-CzTeWbdNms4ncxfRN-jRVZi8G2e22KKLiXV_ra03I79EF0bCuDopurbtna1MtJ1LlocQsQ3X5KIxXwFvTu-UrF-eV8Vbuvh4nRePi7QCDTEVqLWsKG4kp0oYqAUyQFUpUWsjgTNBZaUVzUBSmTEqmkYoQXMcTm9AZXxK7o9z97777jHEctf13g0rS9CUASiuYUjRY6ryXQgem3LvbWv8oWS0HKWWg9RylFqepA7I3RGxiPgvzhjPc81_AdLfc1I</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Liu, Xiangnan</creator><creator>Zhang, Haijun</creator><creator>Long, Keping</creator><creator>Nallanathan, Arumugam</creator><creator>Leung, Victor C. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8337-5884</orcidid><orcidid>https://orcid.org/0000-0002-0094-8948</orcidid><orcidid>https://orcid.org/0000-0001-6678-6075</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid><orcidid>https://orcid.org/0000-0002-0236-6482</orcidid></search><sort><creationdate>20231201</creationdate><title>Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems</title><author>Liu, Xiangnan ; Zhang, Haijun ; Long, Keping ; Nallanathan, Arumugam ; Leung, Victor C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Array signal processing</topic><topic>Artificial neural networks</topic><topic>Base stations</topic><topic>Beamforming</topic><topic>Communications systems</topic><topic>Integrated sensing and communication</topic><topic>Interference</topic><topic>interference management</topic><topic>Machine learning</topic><topic>Radar</topic><topic>Radio equipment</topic><topic>Sensors</topic><topic>Transfer learning</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Long, Keping</creatorcontrib><creatorcontrib>Nallanathan, Arumugam</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangnan</au><au>Zhang, Haijun</au><au>Long, Keping</au><au>Nallanathan, Arumugam</au><au>Leung, Victor C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>22</volume><issue>12</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The study on interference management in ISAC has been envisioned as one of key technologies to support ubiquitous sensing functions. Different from the current work, a communications-sensing-intelligence converged network architecture is proposed to coordinate interference in this paper. Each base station equips with the individual deep neural networks to allocate power and beamforming. On this basis, the interference management is transformed into a functional optimization with stochastic constraints. An unsupervised learning algorithm is proposed to allocate power for interference management. Furthermore, a transfer learning method is presented to obtain the interference management in terms of transmit beamforming. Finally, the distributed management is obtained from the local channel state information in the multi-cell scenario. Simulation results verify the effectiveness of the proposed unsupervised learning interference management method in the ISAC systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3269815</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8337-5884</orcidid><orcidid>https://orcid.org/0000-0002-0094-8948</orcidid><orcidid>https://orcid.org/0000-0001-6678-6075</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid><orcidid>https://orcid.org/0000-0002-0236-6482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2023-12, Vol.22 (12), p.1-1
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_2901226392
source IEEE Xplore (Online service)
subjects Algorithms
Array signal processing
Artificial neural networks
Base stations
Beamforming
Communications systems
Integrated sensing and communication
Interference
interference management
Machine learning
Radar
Radio equipment
Sensors
Transfer learning
Unsupervised learning
title Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Unsupervised%20Learning%20for%20Interference%20Management%20in%20Integrated%20Sensing%20and%20Communication%20Systems&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Liu,%20Xiangnan&rft.date=2023-12-01&rft.volume=22&rft.issue=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3269815&rft_dat=%3Cproquest_cross%3E2901226392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-4e995c0eb53064a2d4e12e6c64d9a5231405c960725057104ff46408e269f2673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901226392&rft_id=info:pmid/&rft_ieee_id=10113889&rfr_iscdi=true