Loading…
Co‐production of biobutanol and biomethane from distillers' grain waste by an integrated process
Background Distillers' grain waste (DGW) is the main by‐product in the Baijiu‐making process and its management remains a great challenge for the Baijiu industry. To address this issue, an integrated biobutanol and biomethane production process was established to obtain valuable products from D...
Saved in:
Published in: | Journal of chemical technology and biotechnology (1986) 2024-01, Vol.99 (1), p.40-49 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Distillers' grain waste (DGW) is the main by‐product in the Baijiu‐making process and its management remains a great challenge for the Baijiu industry. To address this issue, an integrated biobutanol and biomethane production process was established to obtain valuable products from DGW and reduce environmental pollution.
Results
In the integrated process, DGW was hydrolyzed and detoxified to produce biobutanol, while the distillery waste derived from solvent extraction process was used for biomethane fermentation. After the optimization of overliming detoxification of DGW hydrolysate by artificial neural network and genetic algorithm, totals of 10.65 ± 0.07 g L−1 butanol and 4.51 ± 0.21 g L−1 isopropanol were attained with negligible amounts of acetone and ethanol (i.e. 0.14 ± 0.00 and 0.52 ± 0.06 g L−1, respectively). Anaerobic digestion of the distillery waste was efficient, and the chemical oxygen demand removal rate approached 92.3 ± 0.1% with a methane yield of 167.8 ± 1.2 mL g−1 TCODremoved. Moreover, the anaerobic digestion effluent could be recycled as a potential substitute for process water in biobutanol fermentation without having any negative effect on enzymatic hydrolysis of DGW, and the butanol production also reached 8.19 ± 0.29 g L−1.
Conclusion
The present study provides a new idea for comprehensive utilization of DGW towards energy and resource recovery, without secondary pollution. © 2023 Society of Chemical Industry. |
---|---|
ISSN: | 0268-2575 1097-4660 |
DOI: | 10.1002/jctb.7509 |