Loading…
On near orthogonality of certain \(k\)-vectors involving generalized Ramanujan sums
The near orthgonality of certain \(k\)-vectors involving the Ramanujan sums were studied by E. Alkan in [J. Number Theory, 140:147--168 (2014)]. Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by E. Cohen in [Duke Math. J., 16(2):85--90 (1949)]...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Thomas, Neha Elizabeth Namboothiri, K Vishnu |
description | The near orthgonality of certain \(k\)-vectors involving the Ramanujan sums were studied by E. Alkan in [J. Number Theory, 140:147--168 (2014)]. Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by E. Cohen in [Duke Math. J., 16(2):85--90 (1949)]. We also prove that the weighted average \(\frac{1}{k^{s(r+1)}}\sum \limits_{j=1}^{k^s}j^rc_k^{(s)}(j)\) remains positve for all \(r\geq 1\). Further, we give a lower bound for \(\max\limits_{N}\left|\sum \limits_{j=1}^{N^s}c_k^{(s)}(j) \right|\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2901359417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901359417</sourcerecordid><originalsourceid>FETCH-proquest_journals_29013594173</originalsourceid><addsrcrecordid>eNqNzc0KgkAUQOEhCJLyHS60qYUwzmjmOop2QbUUZLDRxvROzY9QT5-LHqDV2XxwJiRgnMfRNmFsRkJrW0op22QsTXlALicElMKANu6uG42iU-4NuoZKGicUQrF6FOtokJXTxoLCQXeDwgYaidKM-iNvcBa9QN8KBOt7uyDTWnRWhr_OyfKwv-6O0dPol5fWla32ZjzZkuU05mmexBn_T30BVkJAbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901359417</pqid></control><display><type>article</type><title>On near orthogonality of certain \(k\)-vectors involving generalized Ramanujan sums</title><source>Publicly Available Content Database</source><creator>Thomas, Neha Elizabeth ; Namboothiri, K Vishnu</creator><creatorcontrib>Thomas, Neha Elizabeth ; Namboothiri, K Vishnu</creatorcontrib><description>The near orthgonality of certain \(k\)-vectors involving the Ramanujan sums were studied by E. Alkan in [J. Number Theory, 140:147--168 (2014)]. Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by E. Cohen in [Duke Math. J., 16(2):85--90 (1949)]. We also prove that the weighted average \(\frac{1}{k^{s(r+1)}}\sum \limits_{j=1}^{k^s}j^rc_k^{(s)}(j)\) remains positve for all \(r\geq 1\). Further, we give a lower bound for \(\max\limits_{N}\left|\sum \limits_{j=1}^{N^s}c_k^{(s)}(j) \right|\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Lower bounds ; Number theory ; Orthogonality</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2901359417?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Thomas, Neha Elizabeth</creatorcontrib><creatorcontrib>Namboothiri, K Vishnu</creatorcontrib><title>On near orthogonality of certain \(k\)-vectors involving generalized Ramanujan sums</title><title>arXiv.org</title><description>The near orthgonality of certain \(k\)-vectors involving the Ramanujan sums were studied by E. Alkan in [J. Number Theory, 140:147--168 (2014)]. Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by E. Cohen in [Duke Math. J., 16(2):85--90 (1949)]. We also prove that the weighted average \(\frac{1}{k^{s(r+1)}}\sum \limits_{j=1}^{k^s}j^rc_k^{(s)}(j)\) remains positve for all \(r\geq 1\). Further, we give a lower bound for \(\max\limits_{N}\left|\sum \limits_{j=1}^{N^s}c_k^{(s)}(j) \right|\).</description><subject>Lower bounds</subject><subject>Number theory</subject><subject>Orthogonality</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzc0KgkAUQOEhCJLyHS60qYUwzmjmOop2QbUUZLDRxvROzY9QT5-LHqDV2XxwJiRgnMfRNmFsRkJrW0op22QsTXlALicElMKANu6uG42iU-4NuoZKGicUQrF6FOtokJXTxoLCQXeDwgYaidKM-iNvcBa9QN8KBOt7uyDTWnRWhr_OyfKwv-6O0dPol5fWla32ZjzZkuU05mmexBn_T30BVkJAbQ</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Thomas, Neha Elizabeth</creator><creator>Namboothiri, K Vishnu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231212</creationdate><title>On near orthogonality of certain \(k\)-vectors involving generalized Ramanujan sums</title><author>Thomas, Neha Elizabeth ; Namboothiri, K Vishnu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29013594173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Lower bounds</topic><topic>Number theory</topic><topic>Orthogonality</topic><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Neha Elizabeth</creatorcontrib><creatorcontrib>Namboothiri, K Vishnu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Neha Elizabeth</au><au>Namboothiri, K Vishnu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On near orthogonality of certain \(k\)-vectors involving generalized Ramanujan sums</atitle><jtitle>arXiv.org</jtitle><date>2023-12-12</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The near orthgonality of certain \(k\)-vectors involving the Ramanujan sums were studied by E. Alkan in [J. Number Theory, 140:147--168 (2014)]. Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by E. Cohen in [Duke Math. J., 16(2):85--90 (1949)]. We also prove that the weighted average \(\frac{1}{k^{s(r+1)}}\sum \limits_{j=1}^{k^s}j^rc_k^{(s)}(j)\) remains positve for all \(r\geq 1\). Further, we give a lower bound for \(\max\limits_{N}\left|\sum \limits_{j=1}^{N^s}c_k^{(s)}(j) \right|\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2901359417 |
source | Publicly Available Content Database |
subjects | Lower bounds Number theory Orthogonality |
title | On near orthogonality of certain \(k\)-vectors involving generalized Ramanujan sums |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20near%20orthogonality%20of%20certain%20%5C(k%5C)-vectors%20involving%20generalized%20Ramanujan%20sums&rft.jtitle=arXiv.org&rft.au=Thomas,%20Neha%20Elizabeth&rft.date=2023-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2901359417%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29013594173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901359417&rft_id=info:pmid/&rfr_iscdi=true |