Loading…

The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model

Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakne...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2024-02, Vol.43 (1), Article 21
Main Authors: Gilani, Narjes, Pourmousa, Reza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103
cites cdi_FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103
container_end_page
container_issue 1
container_start_page
container_title Computational & applied mathematics
container_volume 43
creator Gilani, Narjes
Pourmousa, Reza
description Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakness, and outliers. In this paper, a new generalization of nonlinear regression models is postulated by considering asymmetric Laplace distribution on the error terms to cover the drawbacks of the normal-based model in accommodating skew data with peakness and mild outliers. We present three stochastic representations of the model which enables us to develop an expectation–maximization (EM) algorithm to computationally obtain the maximum-likelihood (ML) parameter estimates. The observed information matrix is computed by adopting an information-based approach. The Bayesian analysis for the proposed model is also investigated. Finally, experiments on the simulation and real-world datasets illustrate some computational and robust aspects of the proposed model.
doi_str_mv 10.1007/s40314-023-02528-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901935994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901935994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9H9yOdRi1ah4KV6XSa7kzY1ydad9pB_72oEbx6GYeB5X4aHsWspbqUQxR2lQss0EUrHyVSZjCdsJktRJEILdcpmSuky0bnQ5-yCaCeELmSaztj7eou8az-wa7feOw6D4w8wIrUwxAO6kZB44wMHGvseD6G1fAX7DizywQ9dOyAEHnATkKj1A--9w-6SnTXQEV797jl7e3pcL56T1evyZXG_SqyW1SHBEnVpM-d0A2CzIqttAbKyUlmweaXA6drVTQNlBGqUeZaLNJO1Ui4FKYWes5updx_85xHpYHb-GOLbZFQlZKWzqkojpSbKBk8UsDH70PYQRiOF-fZnJn8m-jM__swYQ3oKUYSHDYa_6n9SX-A2dWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901935994</pqid></control><display><type>article</type><title>The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model</title><source>Springer Link</source><creator>Gilani, Narjes ; Pourmousa, Reza</creator><creatorcontrib>Gilani, Narjes ; Pourmousa, Reza</creatorcontrib><description>Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakness, and outliers. In this paper, a new generalization of nonlinear regression models is postulated by considering asymmetric Laplace distribution on the error terms to cover the drawbacks of the normal-based model in accommodating skew data with peakness and mild outliers. We present three stochastic representations of the model which enables us to develop an expectation–maximization (EM) algorithm to computationally obtain the maximum-likelihood (ML) parameter estimates. The observed information matrix is computed by adopting an information-based approach. The Bayesian analysis for the proposed model is also investigated. Finally, experiments on the simulation and real-world datasets illustrate some computational and robust aspects of the proposed model.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02528-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Bayesian analysis ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Maximum likelihood estimates ; Outliers (statistics) ; Parameter estimation ; Regression models ; Skewed distributions</subject><ispartof>Computational &amp; applied mathematics, 2024-02, Vol.43 (1), Article 21</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103</citedby><cites>FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gilani, Narjes</creatorcontrib><creatorcontrib>Pourmousa, Reza</creatorcontrib><title>The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakness, and outliers. In this paper, a new generalization of nonlinear regression models is postulated by considering asymmetric Laplace distribution on the error terms to cover the drawbacks of the normal-based model in accommodating skew data with peakness and mild outliers. We present three stochastic representations of the model which enables us to develop an expectation–maximization (EM) algorithm to computationally obtain the maximum-likelihood (ML) parameter estimates. The observed information matrix is computed by adopting an information-based approach. The Bayesian analysis for the proposed model is also investigated. Finally, experiments on the simulation and real-world datasets illustrate some computational and robust aspects of the proposed model.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Bayesian analysis</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimates</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Skewed distributions</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9H9yOdRi1ah4KV6XSa7kzY1ydad9pB_72oEbx6GYeB5X4aHsWspbqUQxR2lQss0EUrHyVSZjCdsJktRJEILdcpmSuky0bnQ5-yCaCeELmSaztj7eou8az-wa7feOw6D4w8wIrUwxAO6kZB44wMHGvseD6G1fAX7DizywQ9dOyAEHnATkKj1A--9w-6SnTXQEV797jl7e3pcL56T1evyZXG_SqyW1SHBEnVpM-d0A2CzIqttAbKyUlmweaXA6drVTQNlBGqUeZaLNJO1Ui4FKYWes5updx_85xHpYHb-GOLbZFQlZKWzqkojpSbKBk8UsDH70PYQRiOF-fZnJn8m-jM__swYQ3oKUYSHDYa_6n9SX-A2dWs</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Gilani, Narjes</creator><creator>Pourmousa, Reza</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model</title><author>Gilani, Narjes ; Pourmousa, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Bayesian analysis</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimates</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Skewed distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilani, Narjes</creatorcontrib><creatorcontrib>Pourmousa, Reza</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilani, Narjes</au><au>Pourmousa, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><artnum>21</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakness, and outliers. In this paper, a new generalization of nonlinear regression models is postulated by considering asymmetric Laplace distribution on the error terms to cover the drawbacks of the normal-based model in accommodating skew data with peakness and mild outliers. We present three stochastic representations of the model which enables us to develop an expectation–maximization (EM) algorithm to computationally obtain the maximum-likelihood (ML) parameter estimates. The observed information matrix is computed by adopting an information-based approach. The Bayesian analysis for the proposed model is also investigated. Finally, experiments on the simulation and real-world datasets illustrate some computational and robust aspects of the proposed model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02528-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2024-02, Vol.43 (1), Article 21
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2901935994
source Springer Link
subjects Algorithms
Applications of Mathematics
Bayesian analysis
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Maximum likelihood estimates
Outliers (statistics)
Parameter estimation
Regression models
Skewed distributions
title The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20likelihood%20and%20Bayesian%20analyses%20for%20asymmetric%20Laplace%20nonlinear%20regression%20model&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Gilani,%20Narjes&rft.date=2024-02-01&rft.volume=43&rft.issue=1&rft.artnum=21&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02528-y&rft_dat=%3Cproquest_cross%3E2901935994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901935994&rft_id=info:pmid/&rfr_iscdi=true