Loading…
The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model
Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakne...
Saved in:
Published in: | Computational & applied mathematics 2024-02, Vol.43 (1), Article 21 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 43 |
creator | Gilani, Narjes Pourmousa, Reza |
description | Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakness, and outliers. In this paper, a new generalization of nonlinear regression models is postulated by considering asymmetric Laplace distribution on the error terms to cover the drawbacks of the normal-based model in accommodating skew data with peakness and mild outliers. We present three stochastic representations of the model which enables us to develop an expectation–maximization (EM) algorithm to computationally obtain the maximum-likelihood (ML) parameter estimates. The observed information matrix is computed by adopting an information-based approach. The Bayesian analysis for the proposed model is also investigated. Finally, experiments on the simulation and real-world datasets illustrate some computational and robust aspects of the proposed model. |
doi_str_mv | 10.1007/s40314-023-02528-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901935994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901935994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9H9yOdRi1ah4KV6XSa7kzY1ydad9pB_72oEbx6GYeB5X4aHsWspbqUQxR2lQss0EUrHyVSZjCdsJktRJEILdcpmSuky0bnQ5-yCaCeELmSaztj7eou8az-wa7feOw6D4w8wIrUwxAO6kZB44wMHGvseD6G1fAX7DizywQ9dOyAEHnATkKj1A--9w-6SnTXQEV797jl7e3pcL56T1evyZXG_SqyW1SHBEnVpM-d0A2CzIqttAbKyUlmweaXA6drVTQNlBGqUeZaLNJO1Ui4FKYWes5updx_85xHpYHb-GOLbZFQlZKWzqkojpSbKBk8UsDH70PYQRiOF-fZnJn8m-jM__swYQ3oKUYSHDYa_6n9SX-A2dWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901935994</pqid></control><display><type>article</type><title>The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model</title><source>Springer Link</source><creator>Gilani, Narjes ; Pourmousa, Reza</creator><creatorcontrib>Gilani, Narjes ; Pourmousa, Reza</creatorcontrib><description>Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakness, and outliers. In this paper, a new generalization of nonlinear regression models is postulated by considering asymmetric Laplace distribution on the error terms to cover the drawbacks of the normal-based model in accommodating skew data with peakness and mild outliers. We present three stochastic representations of the model which enables us to develop an expectation–maximization (EM) algorithm to computationally obtain the maximum-likelihood (ML) parameter estimates. The observed information matrix is computed by adopting an information-based approach. The Bayesian analysis for the proposed model is also investigated. Finally, experiments on the simulation and real-world datasets illustrate some computational and robust aspects of the proposed model.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02528-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Bayesian analysis ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Maximum likelihood estimates ; Outliers (statistics) ; Parameter estimation ; Regression models ; Skewed distributions</subject><ispartof>Computational & applied mathematics, 2024-02, Vol.43 (1), Article 21</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103</citedby><cites>FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gilani, Narjes</creatorcontrib><creatorcontrib>Pourmousa, Reza</creatorcontrib><title>The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakness, and outliers. In this paper, a new generalization of nonlinear regression models is postulated by considering asymmetric Laplace distribution on the error terms to cover the drawbacks of the normal-based model in accommodating skew data with peakness and mild outliers. We present three stochastic representations of the model which enables us to develop an expectation–maximization (EM) algorithm to computationally obtain the maximum-likelihood (ML) parameter estimates. The observed information matrix is computed by adopting an information-based approach. The Bayesian analysis for the proposed model is also investigated. Finally, experiments on the simulation and real-world datasets illustrate some computational and robust aspects of the proposed model.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Bayesian analysis</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimates</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Skewed distributions</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9H9yOdRi1ah4KV6XSa7kzY1ydad9pB_72oEbx6GYeB5X4aHsWspbqUQxR2lQss0EUrHyVSZjCdsJktRJEILdcpmSuky0bnQ5-yCaCeELmSaztj7eou8az-wa7feOw6D4w8wIrUwxAO6kZB44wMHGvseD6G1fAX7DizywQ9dOyAEHnATkKj1A--9w-6SnTXQEV797jl7e3pcL56T1evyZXG_SqyW1SHBEnVpM-d0A2CzIqttAbKyUlmweaXA6drVTQNlBGqUeZaLNJO1Ui4FKYWes5updx_85xHpYHb-GOLbZFQlZKWzqkojpSbKBk8UsDH70PYQRiOF-fZnJn8m-jM__swYQ3oKUYSHDYa_6n9SX-A2dWs</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Gilani, Narjes</creator><creator>Pourmousa, Reza</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model</title><author>Gilani, Narjes ; Pourmousa, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Bayesian analysis</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimates</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Skewed distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilani, Narjes</creatorcontrib><creatorcontrib>Pourmousa, Reza</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilani, Narjes</au><au>Pourmousa, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><artnum>21</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>Regression model is a popular and well-acknowledged technique for finding a relationship between random phenomena. In this context, the normality assumption on the error terms is one of the challenging issues in practical studies because many phenomena in the real world are prone to skewness, peakness, and outliers. In this paper, a new generalization of nonlinear regression models is postulated by considering asymmetric Laplace distribution on the error terms to cover the drawbacks of the normal-based model in accommodating skew data with peakness and mild outliers. We present three stochastic representations of the model which enables us to develop an expectation–maximization (EM) algorithm to computationally obtain the maximum-likelihood (ML) parameter estimates. The observed information matrix is computed by adopting an information-based approach. The Bayesian analysis for the proposed model is also investigated. Finally, experiments on the simulation and real-world datasets illustrate some computational and robust aspects of the proposed model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02528-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2024-02, Vol.43 (1), Article 21 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2901935994 |
source | Springer Link |
subjects | Algorithms Applications of Mathematics Bayesian analysis Computational Mathematics and Numerical Analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Maximum likelihood estimates Outliers (statistics) Parameter estimation Regression models Skewed distributions |
title | The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20likelihood%20and%20Bayesian%20analyses%20for%20asymmetric%20Laplace%20nonlinear%20regression%20model&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Gilani,%20Narjes&rft.date=2024-02-01&rft.volume=43&rft.issue=1&rft.artnum=21&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02528-y&rft_dat=%3Cproquest_cross%3E2901935994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e8e38c5dd3faac575bc7a19c12cac692ad3bdbffa83fabe16560451b22d4a1103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901935994&rft_id=info:pmid/&rfr_iscdi=true |