Loading…
Heat kernel estimates for boundary traces of reflected diffusions on uniform domains
We study the boundary trace processes of reflected diffusions on uniform domains. We obtain stable-like heat kernel estimates for such a boundary trace process when the diffusion on the underlying ambient space satisfies sub-Gaussian heat kernel estimates. Our arguments rely on new results of indepe...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kajino, Naotaka Murugan, Mathav |
description | We study the boundary trace processes of reflected diffusions on uniform domains. We obtain stable-like heat kernel estimates for such a boundary trace process when the diffusion on the underlying ambient space satisfies sub-Gaussian heat kernel estimates. Our arguments rely on new results of independent interest such as sharp two-sided estimates and the volume doubling property of the harmonic measure, the existence of a continuous extension of the Na\"im kernel to the topological boundary, and the Doob--Na\"im formula identifying the Dirichlet form of the boundary trace process as the pure-jump Dirichlet form whose jump kernel with respect to the harmonic measure is exactly (the continuous extension of) the Na\"im kernel. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2902163865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902163865</sourcerecordid><originalsourceid>FETCH-proquest_journals_29021638653</originalsourceid><addsrcrecordid>eNqNjU0KwjAUhIMgWLR3eOC6kL7YWtei9ADdl9i8QGqbaH4W3t4sPICrgW--YTasQCHqqjsh7lgZwsw5x_aMTSMKNvQkIzzJW1qAQjSrjBRAOw8Pl6yS_gPRyykzp8GTXmiKpEAZrVMwzmZuIVmTFysot0pjw4FttVwClb_cs-P9Nlz76uXdO-WXcXbJ21yNeOFYt6JrG_Gf9QXE9EER</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902163865</pqid></control><display><type>article</type><title>Heat kernel estimates for boundary traces of reflected diffusions on uniform domains</title><source>Publicly Available Content Database</source><creator>Kajino, Naotaka ; Murugan, Mathav</creator><creatorcontrib>Kajino, Naotaka ; Murugan, Mathav</creatorcontrib><description>We study the boundary trace processes of reflected diffusions on uniform domains. We obtain stable-like heat kernel estimates for such a boundary trace process when the diffusion on the underlying ambient space satisfies sub-Gaussian heat kernel estimates. Our arguments rely on new results of independent interest such as sharp two-sided estimates and the volume doubling property of the harmonic measure, the existence of a continuous extension of the Na\"im kernel to the topological boundary, and the Doob--Na\"im formula identifying the Dirichlet form of the boundary trace process as the pure-jump Dirichlet form whose jump kernel with respect to the harmonic measure is exactly (the continuous extension of) the Na\"im kernel.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dirichlet problem ; Estimates ; Kernels</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2902163865?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kajino, Naotaka</creatorcontrib><creatorcontrib>Murugan, Mathav</creatorcontrib><title>Heat kernel estimates for boundary traces of reflected diffusions on uniform domains</title><title>arXiv.org</title><description>We study the boundary trace processes of reflected diffusions on uniform domains. We obtain stable-like heat kernel estimates for such a boundary trace process when the diffusion on the underlying ambient space satisfies sub-Gaussian heat kernel estimates. Our arguments rely on new results of independent interest such as sharp two-sided estimates and the volume doubling property of the harmonic measure, the existence of a continuous extension of the Na\"im kernel to the topological boundary, and the Doob--Na\"im formula identifying the Dirichlet form of the boundary trace process as the pure-jump Dirichlet form whose jump kernel with respect to the harmonic measure is exactly (the continuous extension of) the Na\"im kernel.</description><subject>Dirichlet problem</subject><subject>Estimates</subject><subject>Kernels</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjU0KwjAUhIMgWLR3eOC6kL7YWtei9ADdl9i8QGqbaH4W3t4sPICrgW--YTasQCHqqjsh7lgZwsw5x_aMTSMKNvQkIzzJW1qAQjSrjBRAOw8Pl6yS_gPRyykzp8GTXmiKpEAZrVMwzmZuIVmTFysot0pjw4FttVwClb_cs-P9Nlz76uXdO-WXcXbJ21yNeOFYt6JrG_Gf9QXE9EER</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Kajino, Naotaka</creator><creator>Murugan, Mathav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240719</creationdate><title>Heat kernel estimates for boundary traces of reflected diffusions on uniform domains</title><author>Kajino, Naotaka ; Murugan, Mathav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29021638653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dirichlet problem</topic><topic>Estimates</topic><topic>Kernels</topic><toplevel>online_resources</toplevel><creatorcontrib>Kajino, Naotaka</creatorcontrib><creatorcontrib>Murugan, Mathav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kajino, Naotaka</au><au>Murugan, Mathav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Heat kernel estimates for boundary traces of reflected diffusions on uniform domains</atitle><jtitle>arXiv.org</jtitle><date>2024-07-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the boundary trace processes of reflected diffusions on uniform domains. We obtain stable-like heat kernel estimates for such a boundary trace process when the diffusion on the underlying ambient space satisfies sub-Gaussian heat kernel estimates. Our arguments rely on new results of independent interest such as sharp two-sided estimates and the volume doubling property of the harmonic measure, the existence of a continuous extension of the Na\"im kernel to the topological boundary, and the Doob--Na\"im formula identifying the Dirichlet form of the boundary trace process as the pure-jump Dirichlet form whose jump kernel with respect to the harmonic measure is exactly (the continuous extension of) the Na\"im kernel.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2902163865 |
source | Publicly Available Content Database |
subjects | Dirichlet problem Estimates Kernels |
title | Heat kernel estimates for boundary traces of reflected diffusions on uniform domains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Heat%20kernel%20estimates%20for%20boundary%20traces%20of%20reflected%20diffusions%20on%20uniform%20domains&rft.jtitle=arXiv.org&rft.au=Kajino,%20Naotaka&rft.date=2024-07-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2902163865%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29021638653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902163865&rft_id=info:pmid/&rfr_iscdi=true |