Loading…
Effect of the Tool Path on Hardness Uniformity in an Annular Zone of X20Cr13 Steel Surface-Hardened by Friction Stir Processing
This paper presents the numerical and experimental results of hardening of an annular zone on the flat surface of an X20Cr13 steel specimen by friction stir processing (FSP) with a WC-Co hard alloy tool moving along circular and fan-shaped paths. A finite element model of the process is proposed for...
Saved in:
Published in: | Physical mesomechanics 2023-12, Vol.26 (6), p.593-607 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the numerical and experimental results of hardening of an annular zone on the flat surface of an X20Cr13 steel specimen by friction stir processing (FSP) with a WC-Co hard alloy tool moving along circular and fan-shaped paths. A finite element model of the process is proposed for predicting the temperature distribution through the width and depth of the annular zone for the considered tool paths and for detecting the reverse tempering regions. The influence of the paths of a cylindrical friction stir tool with a flat end on microhardness distribution in the surface layer of the hardened zone was studied experimentally. It was shown that FSP along the fan-shaped path provides uniform hardening of the annular zone, while processing along the circular trajectory leads to softening of the material in the regions where the friction tracks overlap. The uniformity of surface hardness in the friction stir processed annular zone of X20Cr13 steel was evaluated by calculating the “covering uniformity” (CU) index proposed by Campana. The hardening behavior is in full agreement with the results of finite element simulation of the FSP process. Hardness measurements and microstructural studies showed that the fan-shaped tool path provides surface layer hardening to a depth of 400 μm with the CU index ranging from 0.78 to 1.00. In the case of the circular path, the CU index ranges from 0.48 to 0.72 at the same depth. The proposed research methods can be applied to evaluate the FSP efficiency when using other workpiece and tool materials. |
---|---|
ISSN: | 1029-9599 1990-5424 |
DOI: | 10.1134/S1029959923060012 |