Loading…

Optimal joint cutting of two-qubit rotation gates

Circuit cutting, the partitioning of quantum circuits into smaller independent fragments, has become a promising avenue for scaling up current quantum-computing experiments. Here, we introduce a scheme for joint cutting of two-qubit rotation gates based on a virtual gate-teleportation protocol. By t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-12
Main Authors: Ufrecht, Christian, Herzog, Laura S, Scherer, Daniel D, Periyasamy, Maniraman, Rietsch, Sebastian, Plinge, Axel, Mutschler, Christopher
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ufrecht, Christian
Herzog, Laura S
Scherer, Daniel D
Periyasamy, Maniraman
Rietsch, Sebastian
Plinge, Axel
Mutschler, Christopher
description Circuit cutting, the partitioning of quantum circuits into smaller independent fragments, has become a promising avenue for scaling up current quantum-computing experiments. Here, we introduce a scheme for joint cutting of two-qubit rotation gates based on a virtual gate-teleportation protocol. By that, we significantly lower the previous upper bounds on the sampling overhead and prove optimality of the scheme. Furthermore, we show that no classical communication between the circuit partitions is required. For parallel two-qubit rotation gates we derive an optimal ancilla-free decomposition, which include CNOT gates as a special case.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2903143667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903143667</sourcerecordid><originalsourceid>FETCH-proquest_journals_29031436673</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwDuSnTXUWxc3FvURJS0LNbZMbfH0dfACnM3xnxSqlteSHRqkNq3MOQghlOtW2umLyNpN_2QkC-kjwLEQ-joAD0Bv5Uh6eICFZ8hhhtOTyjq0HO2VX_7pl-8v5frryOeFSXKY-YEnxS706Ci0bbUyn_7s-xuQzxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903143667</pqid></control><display><type>article</type><title>Optimal joint cutting of two-qubit rotation gates</title><source>Publicly Available Content Database</source><creator>Ufrecht, Christian ; Herzog, Laura S ; Scherer, Daniel D ; Periyasamy, Maniraman ; Rietsch, Sebastian ; Plinge, Axel ; Mutschler, Christopher</creator><creatorcontrib>Ufrecht, Christian ; Herzog, Laura S ; Scherer, Daniel D ; Periyasamy, Maniraman ; Rietsch, Sebastian ; Plinge, Axel ; Mutschler, Christopher</creatorcontrib><description>Circuit cutting, the partitioning of quantum circuits into smaller independent fragments, has become a promising avenue for scaling up current quantum-computing experiments. Here, we introduce a scheme for joint cutting of two-qubit rotation gates based on a virtual gate-teleportation protocol. By that, we significantly lower the previous upper bounds on the sampling overhead and prove optimality of the scheme. Furthermore, we show that no classical communication between the circuit partitions is required. For parallel two-qubit rotation gates we derive an optimal ancilla-free decomposition, which include CNOT gates as a special case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cutting ; Gates (circuits) ; Optimization ; Quantum computing ; Qubits (quantum computing) ; Rotation ; Upper bounds</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2903143667?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Ufrecht, Christian</creatorcontrib><creatorcontrib>Herzog, Laura S</creatorcontrib><creatorcontrib>Scherer, Daniel D</creatorcontrib><creatorcontrib>Periyasamy, Maniraman</creatorcontrib><creatorcontrib>Rietsch, Sebastian</creatorcontrib><creatorcontrib>Plinge, Axel</creatorcontrib><creatorcontrib>Mutschler, Christopher</creatorcontrib><title>Optimal joint cutting of two-qubit rotation gates</title><title>arXiv.org</title><description>Circuit cutting, the partitioning of quantum circuits into smaller independent fragments, has become a promising avenue for scaling up current quantum-computing experiments. Here, we introduce a scheme for joint cutting of two-qubit rotation gates based on a virtual gate-teleportation protocol. By that, we significantly lower the previous upper bounds on the sampling overhead and prove optimality of the scheme. Furthermore, we show that no classical communication between the circuit partitions is required. For parallel two-qubit rotation gates we derive an optimal ancilla-free decomposition, which include CNOT gates as a special case.</description><subject>Cutting</subject><subject>Gates (circuits)</subject><subject>Optimization</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Rotation</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwDuSnTXUWxc3FvURJS0LNbZMbfH0dfACnM3xnxSqlteSHRqkNq3MOQghlOtW2umLyNpN_2QkC-kjwLEQ-joAD0Bv5Uh6eICFZ8hhhtOTyjq0HO2VX_7pl-8v5frryOeFSXKY-YEnxS706Ci0bbUyn_7s-xuQzxQ</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Ufrecht, Christian</creator><creator>Herzog, Laura S</creator><creator>Scherer, Daniel D</creator><creator>Periyasamy, Maniraman</creator><creator>Rietsch, Sebastian</creator><creator>Plinge, Axel</creator><creator>Mutschler, Christopher</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231215</creationdate><title>Optimal joint cutting of two-qubit rotation gates</title><author>Ufrecht, Christian ; Herzog, Laura S ; Scherer, Daniel D ; Periyasamy, Maniraman ; Rietsch, Sebastian ; Plinge, Axel ; Mutschler, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29031436673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cutting</topic><topic>Gates (circuits)</topic><topic>Optimization</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Rotation</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Ufrecht, Christian</creatorcontrib><creatorcontrib>Herzog, Laura S</creatorcontrib><creatorcontrib>Scherer, Daniel D</creatorcontrib><creatorcontrib>Periyasamy, Maniraman</creatorcontrib><creatorcontrib>Rietsch, Sebastian</creatorcontrib><creatorcontrib>Plinge, Axel</creatorcontrib><creatorcontrib>Mutschler, Christopher</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ufrecht, Christian</au><au>Herzog, Laura S</au><au>Scherer, Daniel D</au><au>Periyasamy, Maniraman</au><au>Rietsch, Sebastian</au><au>Plinge, Axel</au><au>Mutschler, Christopher</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimal joint cutting of two-qubit rotation gates</atitle><jtitle>arXiv.org</jtitle><date>2023-12-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Circuit cutting, the partitioning of quantum circuits into smaller independent fragments, has become a promising avenue for scaling up current quantum-computing experiments. Here, we introduce a scheme for joint cutting of two-qubit rotation gates based on a virtual gate-teleportation protocol. By that, we significantly lower the previous upper bounds on the sampling overhead and prove optimality of the scheme. Furthermore, we show that no classical communication between the circuit partitions is required. For parallel two-qubit rotation gates we derive an optimal ancilla-free decomposition, which include CNOT gates as a special case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2903143667
source Publicly Available Content Database
subjects Cutting
Gates (circuits)
Optimization
Quantum computing
Qubits (quantum computing)
Rotation
Upper bounds
title Optimal joint cutting of two-qubit rotation gates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimal%20joint%20cutting%20of%20two-qubit%20rotation%20gates&rft.jtitle=arXiv.org&rft.au=Ufrecht,%20Christian&rft.date=2023-12-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2903143667%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29031436673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903143667&rft_id=info:pmid/&rfr_iscdi=true