Loading…

Monte Carlo Tree Search in the Presence of Transition Uncertainty

Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-12
Main Authors: Kohankhaki, Farnaz, Aghakasiri, Kiarash, Zhang, Hongming, Ting-Han, Wei, Gao, Chao, Müller, Martin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kohankhaki, Farnaz
Aghakasiri, Kiarash
Zhang, Hongming
Ting-Han, Wei
Gao, Chao
Müller, Martin
description Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors.
doi_str_mv 10.48550/arxiv.2312.11348
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2903734132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903734132</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-e523cd453d459674d30547bc27b31571046f53e74d756fe63acaac8d0d6929a3</originalsourceid><addsrcrecordid>eNotjUtLAzEUhYMgWGp_QHcB1zMm9-YxsyyDL6gotF2XNHOHTimJJqnov3dAF4cPzgfnMLaUolaN1uLepe_xqwaUUEuJqrliM0CUVaMAbtgi55MQAowFrXHGVq8xFOKdS-fIt4mIb8glf-Rj4OVI_D1RpuCJx2HSLuSxjDHw3VSl4sZQfm7Z9eDOmRb_nLPN48O2e67Wb08v3WpduVY3FWlA3yuNU1pjVY9CK3vwYA8otZVCmUEjTcJqM5BB553zTS9600LrcM7u_lY_Uvy8UC77U7ykMB3uoRVoUUkE_AXNmUm1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903734132</pqid></control><display><type>article</type><title>Monte Carlo Tree Search in the Presence of Transition Uncertainty</title><source>Publicly Available Content Database</source><creator>Kohankhaki, Farnaz ; Aghakasiri, Kiarash ; Zhang, Hongming ; Ting-Han, Wei ; Gao, Chao ; Müller, Martin</creator><creatorcontrib>Kohankhaki, Farnaz ; Aghakasiri, Kiarash ; Zhang, Hongming ; Ting-Han, Wei ; Gao, Chao ; Müller, Martin</creatorcontrib><description>Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2312.11348</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Environment models ; Monte Carlo simulation ; Performance degradation ; Searching ; Simulation models ; Uncertainty</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2903734132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Kohankhaki, Farnaz</creatorcontrib><creatorcontrib>Aghakasiri, Kiarash</creatorcontrib><creatorcontrib>Zhang, Hongming</creatorcontrib><creatorcontrib>Ting-Han, Wei</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Müller, Martin</creatorcontrib><title>Monte Carlo Tree Search in the Presence of Transition Uncertainty</title><title>arXiv.org</title><description>Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors.</description><subject>Algorithms</subject><subject>Environment models</subject><subject>Monte Carlo simulation</subject><subject>Performance degradation</subject><subject>Searching</subject><subject>Simulation models</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLAzEUhYMgWGp_QHcB1zMm9-YxsyyDL6gotF2XNHOHTimJJqnov3dAF4cPzgfnMLaUolaN1uLepe_xqwaUUEuJqrliM0CUVaMAbtgi55MQAowFrXHGVq8xFOKdS-fIt4mIb8glf-Rj4OVI_D1RpuCJx2HSLuSxjDHw3VSl4sZQfm7Z9eDOmRb_nLPN48O2e67Wb08v3WpduVY3FWlA3yuNU1pjVY9CK3vwYA8otZVCmUEjTcJqM5BB553zTS9600LrcM7u_lY_Uvy8UC77U7ykMB3uoRVoUUkE_AXNmUm1</recordid><startdate>20231218</startdate><enddate>20231218</enddate><creator>Kohankhaki, Farnaz</creator><creator>Aghakasiri, Kiarash</creator><creator>Zhang, Hongming</creator><creator>Ting-Han, Wei</creator><creator>Gao, Chao</creator><creator>Müller, Martin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231218</creationdate><title>Monte Carlo Tree Search in the Presence of Transition Uncertainty</title><author>Kohankhaki, Farnaz ; Aghakasiri, Kiarash ; Zhang, Hongming ; Ting-Han, Wei ; Gao, Chao ; Müller, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-e523cd453d459674d30547bc27b31571046f53e74d756fe63acaac8d0d6929a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Environment models</topic><topic>Monte Carlo simulation</topic><topic>Performance degradation</topic><topic>Searching</topic><topic>Simulation models</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Kohankhaki, Farnaz</creatorcontrib><creatorcontrib>Aghakasiri, Kiarash</creatorcontrib><creatorcontrib>Zhang, Hongming</creatorcontrib><creatorcontrib>Ting-Han, Wei</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Müller, Martin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kohankhaki, Farnaz</au><au>Aghakasiri, Kiarash</au><au>Zhang, Hongming</au><au>Ting-Han, Wei</au><au>Gao, Chao</au><au>Müller, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo Tree Search in the Presence of Transition Uncertainty</atitle><jtitle>arXiv.org</jtitle><date>2023-12-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2312.11348</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2903734132
source Publicly Available Content Database
subjects Algorithms
Environment models
Monte Carlo simulation
Performance degradation
Searching
Simulation models
Uncertainty
title Monte Carlo Tree Search in the Presence of Transition Uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20Tree%20Search%20in%20the%20Presence%20of%20Transition%20Uncertainty&rft.jtitle=arXiv.org&rft.au=Kohankhaki,%20Farnaz&rft.date=2023-12-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2312.11348&rft_dat=%3Cproquest%3E2903734132%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-e523cd453d459674d30547bc27b31571046f53e74d756fe63acaac8d0d6929a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903734132&rft_id=info:pmid/&rfr_iscdi=true