Loading…
Monte Carlo Tree Search in the Presence of Transition Uncertainty
Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kohankhaki, Farnaz Aghakasiri, Kiarash Zhang, Hongming Ting-Han, Wei Gao, Chao Müller, Martin |
description | Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors. |
doi_str_mv | 10.48550/arxiv.2312.11348 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2903734132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903734132</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-e523cd453d459674d30547bc27b31571046f53e74d756fe63acaac8d0d6929a3</originalsourceid><addsrcrecordid>eNotjUtLAzEUhYMgWGp_QHcB1zMm9-YxsyyDL6gotF2XNHOHTimJJqnov3dAF4cPzgfnMLaUolaN1uLepe_xqwaUUEuJqrliM0CUVaMAbtgi55MQAowFrXHGVq8xFOKdS-fIt4mIb8glf-Rj4OVI_D1RpuCJx2HSLuSxjDHw3VSl4sZQfm7Z9eDOmRb_nLPN48O2e67Wb08v3WpduVY3FWlA3yuNU1pjVY9CK3vwYA8otZVCmUEjTcJqM5BB553zTS9600LrcM7u_lY_Uvy8UC77U7ykMB3uoRVoUUkE_AXNmUm1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903734132</pqid></control><display><type>article</type><title>Monte Carlo Tree Search in the Presence of Transition Uncertainty</title><source>Publicly Available Content Database</source><creator>Kohankhaki, Farnaz ; Aghakasiri, Kiarash ; Zhang, Hongming ; Ting-Han, Wei ; Gao, Chao ; Müller, Martin</creator><creatorcontrib>Kohankhaki, Farnaz ; Aghakasiri, Kiarash ; Zhang, Hongming ; Ting-Han, Wei ; Gao, Chao ; Müller, Martin</creatorcontrib><description>Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2312.11348</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Environment models ; Monte Carlo simulation ; Performance degradation ; Searching ; Simulation models ; Uncertainty</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2903734132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Kohankhaki, Farnaz</creatorcontrib><creatorcontrib>Aghakasiri, Kiarash</creatorcontrib><creatorcontrib>Zhang, Hongming</creatorcontrib><creatorcontrib>Ting-Han, Wei</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Müller, Martin</creatorcontrib><title>Monte Carlo Tree Search in the Presence of Transition Uncertainty</title><title>arXiv.org</title><description>Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors.</description><subject>Algorithms</subject><subject>Environment models</subject><subject>Monte Carlo simulation</subject><subject>Performance degradation</subject><subject>Searching</subject><subject>Simulation models</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLAzEUhYMgWGp_QHcB1zMm9-YxsyyDL6gotF2XNHOHTimJJqnov3dAF4cPzgfnMLaUolaN1uLepe_xqwaUUEuJqrliM0CUVaMAbtgi55MQAowFrXHGVq8xFOKdS-fIt4mIb8glf-Rj4OVI_D1RpuCJx2HSLuSxjDHw3VSl4sZQfm7Z9eDOmRb_nLPN48O2e67Wb08v3WpduVY3FWlA3yuNU1pjVY9CK3vwYA8otZVCmUEjTcJqM5BB553zTS9600LrcM7u_lY_Uvy8UC77U7ykMB3uoRVoUUkE_AXNmUm1</recordid><startdate>20231218</startdate><enddate>20231218</enddate><creator>Kohankhaki, Farnaz</creator><creator>Aghakasiri, Kiarash</creator><creator>Zhang, Hongming</creator><creator>Ting-Han, Wei</creator><creator>Gao, Chao</creator><creator>Müller, Martin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231218</creationdate><title>Monte Carlo Tree Search in the Presence of Transition Uncertainty</title><author>Kohankhaki, Farnaz ; Aghakasiri, Kiarash ; Zhang, Hongming ; Ting-Han, Wei ; Gao, Chao ; Müller, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-e523cd453d459674d30547bc27b31571046f53e74d756fe63acaac8d0d6929a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Environment models</topic><topic>Monte Carlo simulation</topic><topic>Performance degradation</topic><topic>Searching</topic><topic>Simulation models</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Kohankhaki, Farnaz</creatorcontrib><creatorcontrib>Aghakasiri, Kiarash</creatorcontrib><creatorcontrib>Zhang, Hongming</creatorcontrib><creatorcontrib>Ting-Han, Wei</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Müller, Martin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kohankhaki, Farnaz</au><au>Aghakasiri, Kiarash</au><au>Zhang, Hongming</au><au>Ting-Han, Wei</au><au>Gao, Chao</au><au>Müller, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo Tree Search in the Presence of Transition Uncertainty</atitle><jtitle>arXiv.org</jtitle><date>2023-12-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2312.11348</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2903734132 |
source | Publicly Available Content Database |
subjects | Algorithms Environment models Monte Carlo simulation Performance degradation Searching Simulation models Uncertainty |
title | Monte Carlo Tree Search in the Presence of Transition Uncertainty |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20Tree%20Search%20in%20the%20Presence%20of%20Transition%20Uncertainty&rft.jtitle=arXiv.org&rft.au=Kohankhaki,%20Farnaz&rft.date=2023-12-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2312.11348&rft_dat=%3Cproquest%3E2903734132%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-e523cd453d459674d30547bc27b31571046f53e74d756fe63acaac8d0d6929a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903734132&rft_id=info:pmid/&rfr_iscdi=true |