Loading…

VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder

This paper introduces a pioneering 3D volumetric encoder designed for text-to-3D generation. To scale up the training data for the diffusion model, a lightweight network is developed to efficiently acquire feature volumes from multi-view images. The 3D volumes are then trained on a diffusion model f...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Tang, Zhicong, Gu, Shuyang, Wang, Chunyu, Zhang, Ting, Bao, Jianmin, Chen, Dong, Guo, Baining
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tang, Zhicong
Gu, Shuyang
Wang, Chunyu
Zhang, Ting
Bao, Jianmin
Chen, Dong
Guo, Baining
description This paper introduces a pioneering 3D volumetric encoder designed for text-to-3D generation. To scale up the training data for the diffusion model, a lightweight network is developed to efficiently acquire feature volumes from multi-view images. The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net. This research further addresses the challenges of inaccurate object captions and high-dimensional feature volumes. The proposed model, trained on the public Objaverse dataset, demonstrates promising outcomes in producing diverse and recognizable samples from text prompts. Notably, it empowers finer control over object part characteristics through textual cues, fostering model creativity by seamlessly combining multiple concepts within a single object. This research significantly contributes to the progress of 3D generation by introducing an efficient, flexible, and scalable representation methodology.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2903736780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903736780</sourcerecordid><originalsourceid>FETCH-proquest_journals_29037367803</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3CLgOxMR-dGtb3QrFbanxBVNiovlgj29BD-BqFjMzQwnjfEPKLWMLlHo_UEpZXrAs4wk6X6yOD6iUlNEra_a40TCqqwbcwhhIsIRX-AgGXB8mj98q3HEtpRIKTMDfPTglcG2EvYFbobnstYf0xyVaN3V7OJGns68IPnSDjc5MqmM7ygueFyXl_1UfjhA_LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903736780</pqid></control><display><type>article</type><title>VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder</title><source>Publicly Available Content (ProQuest)</source><creator>Tang, Zhicong ; Gu, Shuyang ; Wang, Chunyu ; Zhang, Ting ; Bao, Jianmin ; Chen, Dong ; Guo, Baining</creator><creatorcontrib>Tang, Zhicong ; Gu, Shuyang ; Wang, Chunyu ; Zhang, Ting ; Bao, Jianmin ; Chen, Dong ; Guo, Baining</creatorcontrib><description>This paper introduces a pioneering 3D volumetric encoder designed for text-to-3D generation. To scale up the training data for the diffusion model, a lightweight network is developed to efficiently acquire feature volumes from multi-view images. The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net. This research further addresses the challenges of inaccurate object captions and high-dimensional feature volumes. The proposed model, trained on the public Objaverse dataset, demonstrates promising outcomes in producing diverse and recognizable samples from text prompts. Notably, it empowers finer control over object part characteristics through textual cues, fostering model creativity by seamlessly combining multiple concepts within a single object. This research significantly contributes to the progress of 3D generation by introducing an efficient, flexible, and scalable representation methodology.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Image acquisition ; Three dimensional models</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2903736780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Tang, Zhicong</creatorcontrib><creatorcontrib>Gu, Shuyang</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Bao, Jianmin</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Guo, Baining</creatorcontrib><title>VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder</title><title>arXiv.org</title><description>This paper introduces a pioneering 3D volumetric encoder designed for text-to-3D generation. To scale up the training data for the diffusion model, a lightweight network is developed to efficiently acquire feature volumes from multi-view images. The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net. This research further addresses the challenges of inaccurate object captions and high-dimensional feature volumes. The proposed model, trained on the public Objaverse dataset, demonstrates promising outcomes in producing diverse and recognizable samples from text prompts. Notably, it empowers finer control over object part characteristics through textual cues, fostering model creativity by seamlessly combining multiple concepts within a single object. This research significantly contributes to the progress of 3D generation by introducing an efficient, flexible, and scalable representation methodology.</description><subject>Coders</subject><subject>Image acquisition</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3CLgOxMR-dGtb3QrFbanxBVNiovlgj29BD-BqFjMzQwnjfEPKLWMLlHo_UEpZXrAs4wk6X6yOD6iUlNEra_a40TCqqwbcwhhIsIRX-AgGXB8mj98q3HEtpRIKTMDfPTglcG2EvYFbobnstYf0xyVaN3V7OJGns68IPnSDjc5MqmM7ygueFyXl_1UfjhA_LA</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Tang, Zhicong</creator><creator>Gu, Shuyang</creator><creator>Wang, Chunyu</creator><creator>Zhang, Ting</creator><creator>Bao, Jianmin</creator><creator>Chen, Dong</creator><creator>Guo, Baining</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240813</creationdate><title>VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder</title><author>Tang, Zhicong ; Gu, Shuyang ; Wang, Chunyu ; Zhang, Ting ; Bao, Jianmin ; Chen, Dong ; Guo, Baining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29037367803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Image acquisition</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zhicong</creatorcontrib><creatorcontrib>Gu, Shuyang</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Bao, Jianmin</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Guo, Baining</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zhicong</au><au>Gu, Shuyang</au><au>Wang, Chunyu</au><au>Zhang, Ting</au><au>Bao, Jianmin</au><au>Chen, Dong</au><au>Guo, Baining</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder</atitle><jtitle>arXiv.org</jtitle><date>2024-08-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper introduces a pioneering 3D volumetric encoder designed for text-to-3D generation. To scale up the training data for the diffusion model, a lightweight network is developed to efficiently acquire feature volumes from multi-view images. The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net. This research further addresses the challenges of inaccurate object captions and high-dimensional feature volumes. The proposed model, trained on the public Objaverse dataset, demonstrates promising outcomes in producing diverse and recognizable samples from text prompts. Notably, it empowers finer control over object part characteristics through textual cues, fostering model creativity by seamlessly combining multiple concepts within a single object. This research significantly contributes to the progress of 3D generation by introducing an efficient, flexible, and scalable representation methodology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2903736780
source Publicly Available Content (ProQuest)
subjects Coders
Image acquisition
Three dimensional models
title VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=VolumeDiffusion:%20Flexible%20Text-to-3D%20Generation%20with%20Efficient%20Volumetric%20Encoder&rft.jtitle=arXiv.org&rft.au=Tang,%20Zhicong&rft.date=2024-08-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2903736780%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29037367803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903736780&rft_id=info:pmid/&rfr_iscdi=true