Loading…
Unstructured Moving Least Squares Material Point Methods: A Stable Kernel Approach With Continuous Gradient Reconstruction on General Unstructured Tessellations
The Material Point Method (MPM) is a hybrid Eulerian Lagrangian simulation technique for solid mechanics with significant deformation. Structured background grids are commonly employed in the standard MPM, but they may give rise to several accuracy problems in handling complex geometries. When using...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cao, Yadi Zhao, Yidong Li, Minchen Yang, Yin Choo, Jinhyun Terzopoulos, Demetri Jiang, Chenfanfu |
description | The Material Point Method (MPM) is a hybrid Eulerian Lagrangian simulation technique for solid mechanics with significant deformation. Structured background grids are commonly employed in the standard MPM, but they may give rise to several accuracy problems in handling complex geometries. When using (2D) unstructured triangular or (3D) tetrahedral background elements, however, significant challenges arise (\eg, cell-crossing error). Substantial numerical errors develop due to the inherent \(\mathcal{C}^0\) continuity property of the interpolation function, which causes discontinuous gradients across element boundaries. Prior efforts in constructing \(\mathcal{C}^1\) continuous interpolation functions have either not been adapted for unstructured grids or have only been applied to 2D triangular meshes. In this study, an Unstructured Moving Least Squares MPM (UMLS-MPM) is introduced to accommodate 2D and 3D simplex tessellation. The central idea is to incorporate a diminishing function into the sample weights of the MLS kernel, ensuring an analytically continuous velocity gradient estimation. Numerical analyses confirm the method's capability in mitigating cell crossing inaccuracies and realizing expected convergence. |
doi_str_mv | 10.48550/arxiv.2312.10338 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2903736875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903736875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-8c68b4c13fd8e73c0e53b83205ec9df5f30a18b794422f164c485f2c7835d73</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhYMgWGp_gLeA561JZrObeitFq9iitBWPJZudtSlL0ibZ4s_xp7piL8LAu8z73swj5Iazca6kZHc6fNnTWAAXY84A1AUZCACeqVyIKzKKcc8YE0UppIQB-X53MYXOpC5gTZf-ZN0nXaCOia6PnQ4Y6VInDFa39M1bl-gS087X8Z5O6TrpqkX6gsFhS6eHQ_Da7OiHTTs68y5Z1_ku0nnQtcXeukLjz3HWO9rPHB2GHv3vig3GiG2rf5fiNblsdBtxdNYhWT0-bGZP2eJ1_jybLjIthcyUKVSVGw5NrbAEw1BCpUAwiWZSN7IBprmqyknet9DwIjd9WY0wpQJZlzAkt3_Q_oNjhzFt974Lrs_bigmDEgpVSvgBw39uKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903736875</pqid></control><display><type>article</type><title>Unstructured Moving Least Squares Material Point Methods: A Stable Kernel Approach With Continuous Gradient Reconstruction on General Unstructured Tessellations</title><source>Publicly Available Content Database</source><creator>Cao, Yadi ; Zhao, Yidong ; Li, Minchen ; Yang, Yin ; Choo, Jinhyun ; Terzopoulos, Demetri ; Jiang, Chenfanfu</creator><creatorcontrib>Cao, Yadi ; Zhao, Yidong ; Li, Minchen ; Yang, Yin ; Choo, Jinhyun ; Terzopoulos, Demetri ; Jiang, Chenfanfu</creatorcontrib><description>The Material Point Method (MPM) is a hybrid Eulerian Lagrangian simulation technique for solid mechanics with significant deformation. Structured background grids are commonly employed in the standard MPM, but they may give rise to several accuracy problems in handling complex geometries. When using (2D) unstructured triangular or (3D) tetrahedral background elements, however, significant challenges arise (\eg, cell-crossing error). Substantial numerical errors develop due to the inherent \(\mathcal{C}^0\) continuity property of the interpolation function, which causes discontinuous gradients across element boundaries. Prior efforts in constructing \(\mathcal{C}^1\) continuous interpolation functions have either not been adapted for unstructured grids or have only been applied to 2D triangular meshes. In this study, an Unstructured Moving Least Squares MPM (UMLS-MPM) is introduced to accommodate 2D and 3D simplex tessellation. The central idea is to incorporate a diminishing function into the sample weights of the MLS kernel, ensuring an analytically continuous velocity gradient estimation. Numerical analyses confirm the method's capability in mitigating cell crossing inaccuracies and realizing expected convergence.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2312.10338</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Continuity (mathematics) ; Geometric accuracy ; Image reconstruction ; Interpolation ; Kernels ; Mathematical analysis ; Solid mechanics ; Tessellation ; Unstructured grids (mathematics) ; Velocity gradient</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2903736875?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cao, Yadi</creatorcontrib><creatorcontrib>Zhao, Yidong</creatorcontrib><creatorcontrib>Li, Minchen</creatorcontrib><creatorcontrib>Yang, Yin</creatorcontrib><creatorcontrib>Choo, Jinhyun</creatorcontrib><creatorcontrib>Terzopoulos, Demetri</creatorcontrib><creatorcontrib>Jiang, Chenfanfu</creatorcontrib><title>Unstructured Moving Least Squares Material Point Methods: A Stable Kernel Approach With Continuous Gradient Reconstruction on General Unstructured Tessellations</title><title>arXiv.org</title><description>The Material Point Method (MPM) is a hybrid Eulerian Lagrangian simulation technique for solid mechanics with significant deformation. Structured background grids are commonly employed in the standard MPM, but they may give rise to several accuracy problems in handling complex geometries. When using (2D) unstructured triangular or (3D) tetrahedral background elements, however, significant challenges arise (\eg, cell-crossing error). Substantial numerical errors develop due to the inherent \(\mathcal{C}^0\) continuity property of the interpolation function, which causes discontinuous gradients across element boundaries. Prior efforts in constructing \(\mathcal{C}^1\) continuous interpolation functions have either not been adapted for unstructured grids or have only been applied to 2D triangular meshes. In this study, an Unstructured Moving Least Squares MPM (UMLS-MPM) is introduced to accommodate 2D and 3D simplex tessellation. The central idea is to incorporate a diminishing function into the sample weights of the MLS kernel, ensuring an analytically continuous velocity gradient estimation. Numerical analyses confirm the method's capability in mitigating cell crossing inaccuracies and realizing expected convergence.</description><subject>Continuity (mathematics)</subject><subject>Geometric accuracy</subject><subject>Image reconstruction</subject><subject>Interpolation</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Solid mechanics</subject><subject>Tessellation</subject><subject>Unstructured grids (mathematics)</subject><subject>Velocity gradient</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkEFLAzEQhYMgWGp_gLeA561JZrObeitFq9iitBWPJZudtSlL0ibZ4s_xp7piL8LAu8z73swj5Iazca6kZHc6fNnTWAAXY84A1AUZCACeqVyIKzKKcc8YE0UppIQB-X53MYXOpC5gTZf-ZN0nXaCOia6PnQ4Y6VInDFa39M1bl-gS087X8Z5O6TrpqkX6gsFhS6eHQ_Da7OiHTTs68y5Z1_ku0nnQtcXeukLjz3HWO9rPHB2GHv3vig3GiG2rf5fiNblsdBtxdNYhWT0-bGZP2eJ1_jybLjIthcyUKVSVGw5NrbAEw1BCpUAwiWZSN7IBprmqyknet9DwIjd9WY0wpQJZlzAkt3_Q_oNjhzFt974Lrs_bigmDEgpVSvgBw39uKA</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Cao, Yadi</creator><creator>Zhao, Yidong</creator><creator>Li, Minchen</creator><creator>Yang, Yin</creator><creator>Choo, Jinhyun</creator><creator>Terzopoulos, Demetri</creator><creator>Jiang, Chenfanfu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240731</creationdate><title>Unstructured Moving Least Squares Material Point Methods: A Stable Kernel Approach With Continuous Gradient Reconstruction on General Unstructured Tessellations</title><author>Cao, Yadi ; Zhao, Yidong ; Li, Minchen ; Yang, Yin ; Choo, Jinhyun ; Terzopoulos, Demetri ; Jiang, Chenfanfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-8c68b4c13fd8e73c0e53b83205ec9df5f30a18b794422f164c485f2c7835d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Continuity (mathematics)</topic><topic>Geometric accuracy</topic><topic>Image reconstruction</topic><topic>Interpolation</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Solid mechanics</topic><topic>Tessellation</topic><topic>Unstructured grids (mathematics)</topic><topic>Velocity gradient</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yadi</creatorcontrib><creatorcontrib>Zhao, Yidong</creatorcontrib><creatorcontrib>Li, Minchen</creatorcontrib><creatorcontrib>Yang, Yin</creatorcontrib><creatorcontrib>Choo, Jinhyun</creatorcontrib><creatorcontrib>Terzopoulos, Demetri</creatorcontrib><creatorcontrib>Jiang, Chenfanfu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yadi</au><au>Zhao, Yidong</au><au>Li, Minchen</au><au>Yang, Yin</au><au>Choo, Jinhyun</au><au>Terzopoulos, Demetri</au><au>Jiang, Chenfanfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unstructured Moving Least Squares Material Point Methods: A Stable Kernel Approach With Continuous Gradient Reconstruction on General Unstructured Tessellations</atitle><jtitle>arXiv.org</jtitle><date>2024-07-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Material Point Method (MPM) is a hybrid Eulerian Lagrangian simulation technique for solid mechanics with significant deformation. Structured background grids are commonly employed in the standard MPM, but they may give rise to several accuracy problems in handling complex geometries. When using (2D) unstructured triangular or (3D) tetrahedral background elements, however, significant challenges arise (\eg, cell-crossing error). Substantial numerical errors develop due to the inherent \(\mathcal{C}^0\) continuity property of the interpolation function, which causes discontinuous gradients across element boundaries. Prior efforts in constructing \(\mathcal{C}^1\) continuous interpolation functions have either not been adapted for unstructured grids or have only been applied to 2D triangular meshes. In this study, an Unstructured Moving Least Squares MPM (UMLS-MPM) is introduced to accommodate 2D and 3D simplex tessellation. The central idea is to incorporate a diminishing function into the sample weights of the MLS kernel, ensuring an analytically continuous velocity gradient estimation. Numerical analyses confirm the method's capability in mitigating cell crossing inaccuracies and realizing expected convergence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2312.10338</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2903736875 |
source | Publicly Available Content Database |
subjects | Continuity (mathematics) Geometric accuracy Image reconstruction Interpolation Kernels Mathematical analysis Solid mechanics Tessellation Unstructured grids (mathematics) Velocity gradient |
title | Unstructured Moving Least Squares Material Point Methods: A Stable Kernel Approach With Continuous Gradient Reconstruction on General Unstructured Tessellations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unstructured%20Moving%20Least%20Squares%20Material%20Point%20Methods:%20A%20Stable%20Kernel%20Approach%20With%20Continuous%20Gradient%20Reconstruction%20on%20General%20Unstructured%20Tessellations&rft.jtitle=arXiv.org&rft.au=Cao,%20Yadi&rft.date=2024-07-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2312.10338&rft_dat=%3Cproquest%3E2903736875%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-8c68b4c13fd8e73c0e53b83205ec9df5f30a18b794422f164c485f2c7835d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903736875&rft_id=info:pmid/&rfr_iscdi=true |