Loading…

Self-powered photodetectors based on Ruddlesden–Popper 2D hybrid perovskites with carbazole derivatives

Recently, carbazole-based organic cations have garnered interest for their potential application in two-dimensional (2D) layered hybrid perovskite solar cells because of their strong hole extraction and transport as well as humidity resistance. However, the potential incorporation of carbazole-based...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2023-12, Vol.123 (25)
Main Authors: Alphenaar, Anna Niamh, Zhang, Xiaoyu, Xu, Yuanze, Ramakrishnan, Shripathi, Zhang, Yugang, Yu, Qiuming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, carbazole-based organic cations have garnered interest for their potential application in two-dimensional (2D) layered hybrid perovskite solar cells because of their strong hole extraction and transport as well as humidity resistance. However, the potential incorporation of carbazole-based Ruddlesden–Popper 2D hybrid perovskites in photodetectors has been largely unexplored. In this study, we synthesized ammonium 1-(9H-carbazol-9-yl) ethanaminium iodide (CzEAI) and fabricated (CzEA)2PbI4 2D perovskite thin films via varying solvent conditions to control film morphology. We constructed photodiode-type photodetectors with the active layer of (CzEA)2PbI4 2D perovskites and demonstrated a specific detectivity of 6.95 × 1010 Jones at 485 nm illumination without external bias. These results demonstrate the potential of carbazole-based 2D perovskites in a wide range of optoelectronic applications.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0179297