Loading…

On the distance to low-rank matrices in the maximum norm

Every sufficiently big matrix with small spectral norm has a nearby low-rank matrix if the distance is measured in the maximum norm (Udell & Townsend, SIAM J Math Data Sci, 2019). We use the Hanson--Wright inequality to improve the estimate of the distance for matrices with incoherent column and...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Author: Budzinskiy, Stanislav
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Budzinskiy, Stanislav
description Every sufficiently big matrix with small spectral norm has a nearby low-rank matrix if the distance is measured in the maximum norm (Udell & Townsend, SIAM J Math Data Sci, 2019). We use the Hanson--Wright inequality to improve the estimate of the distance for matrices with incoherent column and row spaces. In numerical experiments with several classes of matrices we study how well the theoretical upper bound describes the approximation errors achieved with the method of alternating projections.
doi_str_mv 10.48550/arxiv.2312.12905
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2904548709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904548709</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-309767247aa4a0b575fbcb45c5a4e7927c09b1d342b14e64a6072a58a3e3ba863</originalsourceid><addsrcrecordid>eNotj8tqwzAQRUWh0JDmA7ITZG1XGs1Y0rKEviCQTfZh5CjUSWy3kt3m82tIV3dzOIcrxFKrEh2ReuJ0bX5KMBpKDV7RnZiBMbpwCPAgFjmflFJQWSAyM-G2nRw-ozw0eeCujnLo5aX_LRJ3Z9nykJo6ZtncoJavTTu2sutT-yjuj3zJcfG_c7F7fdmt34vN9u1j_bwp2BMVRnk7pdAyI6tAlo6hDkg1MUbrwdbKB30wCEFjrJArZYHJsYkmsKvMXKxu2q_Uf48xD_tTP6ZuKu6nc0jorPLmDzERRso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904548709</pqid></control><display><type>article</type><title>On the distance to low-rank matrices in the maximum norm</title><source>Publicly Available Content (ProQuest)</source><creator>Budzinskiy, Stanislav</creator><creatorcontrib>Budzinskiy, Stanislav</creatorcontrib><description>Every sufficiently big matrix with small spectral norm has a nearby low-rank matrix if the distance is measured in the maximum norm (Udell &amp; Townsend, SIAM J Math Data Sci, 2019). We use the Hanson--Wright inequality to improve the estimate of the distance for matrices with incoherent column and row spaces. In numerical experiments with several classes of matrices we study how well the theoretical upper bound describes the approximation errors achieved with the method of alternating projections.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2312.12905</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Matrices (mathematics) ; Upper bounds</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2904548709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Budzinskiy, Stanislav</creatorcontrib><title>On the distance to low-rank matrices in the maximum norm</title><title>arXiv.org</title><description>Every sufficiently big matrix with small spectral norm has a nearby low-rank matrix if the distance is measured in the maximum norm (Udell &amp; Townsend, SIAM J Math Data Sci, 2019). We use the Hanson--Wright inequality to improve the estimate of the distance for matrices with incoherent column and row spaces. In numerical experiments with several classes of matrices we study how well the theoretical upper bound describes the approximation errors achieved with the method of alternating projections.</description><subject>Matrices (mathematics)</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj8tqwzAQRUWh0JDmA7ITZG1XGs1Y0rKEviCQTfZh5CjUSWy3kt3m82tIV3dzOIcrxFKrEh2ReuJ0bX5KMBpKDV7RnZiBMbpwCPAgFjmflFJQWSAyM-G2nRw-ozw0eeCujnLo5aX_LRJ3Z9nykJo6ZtncoJavTTu2sutT-yjuj3zJcfG_c7F7fdmt34vN9u1j_bwp2BMVRnk7pdAyI6tAlo6hDkg1MUbrwdbKB30wCEFjrJArZYHJsYkmsKvMXKxu2q_Uf48xD_tTP6ZuKu6nc0jorPLmDzERRso</recordid><startdate>20240219</startdate><enddate>20240219</enddate><creator>Budzinskiy, Stanislav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240219</creationdate><title>On the distance to low-rank matrices in the maximum norm</title><author>Budzinskiy, Stanislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-309767247aa4a0b575fbcb45c5a4e7927c09b1d342b14e64a6072a58a3e3ba863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Matrices (mathematics)</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Budzinskiy, Stanislav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budzinskiy, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the distance to low-rank matrices in the maximum norm</atitle><jtitle>arXiv.org</jtitle><date>2024-02-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Every sufficiently big matrix with small spectral norm has a nearby low-rank matrix if the distance is measured in the maximum norm (Udell &amp; Townsend, SIAM J Math Data Sci, 2019). We use the Hanson--Wright inequality to improve the estimate of the distance for matrices with incoherent column and row spaces. In numerical experiments with several classes of matrices we study how well the theoretical upper bound describes the approximation errors achieved with the method of alternating projections.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2312.12905</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2904548709
source Publicly Available Content (ProQuest)
subjects Matrices (mathematics)
Upper bounds
title On the distance to low-rank matrices in the maximum norm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20distance%20to%20low-rank%20matrices%20in%20the%20maximum%20norm&rft.jtitle=arXiv.org&rft.au=Budzinskiy,%20Stanislav&rft.date=2024-02-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2312.12905&rft_dat=%3Cproquest%3E2904548709%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-309767247aa4a0b575fbcb45c5a4e7927c09b1d342b14e64a6072a58a3e3ba863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904548709&rft_id=info:pmid/&rfr_iscdi=true