Loading…

A Novel ANN-Based GMPPT Method for PV Systems Under Complex Partial Shading Conditions

In this article, a new two-stage global maximum power point tracking (GMPPT) algorithm based on artificial neural network (ANN) is proposed. The novel ANN architecture is presented first, which requires fewer sampling points than other ANN-based GMPPT approaches, thereby reducing both the tracking t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on sustainable energy 2024-01, Vol.15 (1), p.328-338
Main Authors: Ye, Song-Pei, Liu, Yi-Hua, Pai, Hung-Yu, Sangwongwanich, Ariya, Blaabjerg, Frede
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-4a4f83a2e1517b11167f4c6e2f4f16065bcadcd4f8e491988f9d852c45b7da5c3
cites cdi_FETCH-LOGICAL-c294t-4a4f83a2e1517b11167f4c6e2f4f16065bcadcd4f8e491988f9d852c45b7da5c3
container_end_page 338
container_issue 1
container_start_page 328
container_title IEEE transactions on sustainable energy
container_volume 15
creator Ye, Song-Pei
Liu, Yi-Hua
Pai, Hung-Yu
Sangwongwanich, Ariya
Blaabjerg, Frede
description In this article, a new two-stage global maximum power point tracking (GMPPT) algorithm based on artificial neural network (ANN) is proposed. The novel ANN architecture is presented first, which requires fewer sampling points than other ANN-based GMPPT approaches, thereby reducing both the tracking time and power loss involved in the tracking. In addition, it does not require costly illuminance or temperature sensors and can be realized using a low-cost digital signal controller. According to the simulation results, the proposed method has the best performance among all methods in terms of tracking speed, tracking accuracy, and tracking loss for all the three tested shading patterns (SPs). The simulated results of 252 SPs show that the performance indexes (PIs) of the proposed method are the best among all the compared methods, which are: the average tracking time 0.18 seconds, average power loss 0.01 W. In addition, the proposed method can correctly predict the GMPP positions of all 252 SPs. Furthermore, the PIs of the proposed method are also the best among all the compared methods according to the experimental results, which are: the tracking speed 0.21 seconds, tracking accuracy 99.66%, and tracking loss 12.58 W, all the above are average values.
doi_str_mv 10.1109/TSTE.2023.3284866
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904589329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10148801</ieee_id><sourcerecordid>2904589329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4a4f83a2e1517b11167f4c6e2f4f16065bcadcd4f8e491988f9d852c45b7da5c3</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpoWL9AYUeAj2vzdfuJkcr1hbULrh6DTEfdWXd2GRb6r_vilI6lxmG552BB4B7jIYYI_FULsvJkCBCh5RwxrPsCvSwYCKhiObXfzMRt2AQ4w51RSnNKOqB9Qgu_Let4WixSJ5VtAZO50VRwrltt95A5wMs1nB5jK3dR7hqjA1w7PeH2v7AQoW2UjVcbpWpmo9u35iqrXwT78CNU3W0g0vvg9XLpBy_JrP36dt4NEs0EaxNmGKOU0UsTnG-wRhnuWM6s8QxhzOUpRutjDYdZJnAgnMnDE-JZukmNyrVtA8ez3cPwX9-2djKnf8KTfdSEoFYygUloqPwmdLBxxisk4dQ7VU4SozkyaA8GZQng_JisMs8nDOVtfYfjxnnCNNfOMxqwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904589329</pqid></control><display><type>article</type><title>A Novel ANN-Based GMPPT Method for PV Systems Under Complex Partial Shading Conditions</title><source>IEEE Xplore (Online service)</source><creator>Ye, Song-Pei ; Liu, Yi-Hua ; Pai, Hung-Yu ; Sangwongwanich, Ariya ; Blaabjerg, Frede</creator><creatorcontrib>Ye, Song-Pei ; Liu, Yi-Hua ; Pai, Hung-Yu ; Sangwongwanich, Ariya ; Blaabjerg, Frede</creatorcontrib><description>In this article, a new two-stage global maximum power point tracking (GMPPT) algorithm based on artificial neural network (ANN) is proposed. The novel ANN architecture is presented first, which requires fewer sampling points than other ANN-based GMPPT approaches, thereby reducing both the tracking time and power loss involved in the tracking. In addition, it does not require costly illuminance or temperature sensors and can be realized using a low-cost digital signal controller. According to the simulation results, the proposed method has the best performance among all methods in terms of tracking speed, tracking accuracy, and tracking loss for all the three tested shading patterns (SPs). The simulated results of 252 SPs show that the performance indexes (PIs) of the proposed method are the best among all the compared methods, which are: the average tracking time 0.18 seconds, average power loss 0.01 W. In addition, the proposed method can correctly predict the GMPP positions of all 252 SPs. Furthermore, the PIs of the proposed method are also the best among all the compared methods according to the experimental results, which are: the tracking speed 0.21 seconds, tracking accuracy 99.66%, and tracking loss 12.58 W, all the above are average values.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2023.3284866</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural network (ANN) ; Artificial neural networks ; Computer simulation ; global maximum power point tracking (GMPPT) ; Illuminance ; Maximum power point trackers ; Maximum power tracking ; Neural networks ; Performance evaluation ; Performance indices ; photovoltaic (PV) ; Photovoltaic systems ; Shading ; Solar panels ; Temperature requirements ; Temperature sensors ; Voltage control ; Voltage measurement</subject><ispartof>IEEE transactions on sustainable energy, 2024-01, Vol.15 (1), p.328-338</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-4a4f83a2e1517b11167f4c6e2f4f16065bcadcd4f8e491988f9d852c45b7da5c3</citedby><cites>FETCH-LOGICAL-c294t-4a4f83a2e1517b11167f4c6e2f4f16065bcadcd4f8e491988f9d852c45b7da5c3</cites><orcidid>0000-0002-2587-0024 ; 0000-0001-7593-0155 ; 0000-0001-8311-7412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10148801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ye, Song-Pei</creatorcontrib><creatorcontrib>Liu, Yi-Hua</creatorcontrib><creatorcontrib>Pai, Hung-Yu</creatorcontrib><creatorcontrib>Sangwongwanich, Ariya</creatorcontrib><creatorcontrib>Blaabjerg, Frede</creatorcontrib><title>A Novel ANN-Based GMPPT Method for PV Systems Under Complex Partial Shading Conditions</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>In this article, a new two-stage global maximum power point tracking (GMPPT) algorithm based on artificial neural network (ANN) is proposed. The novel ANN architecture is presented first, which requires fewer sampling points than other ANN-based GMPPT approaches, thereby reducing both the tracking time and power loss involved in the tracking. In addition, it does not require costly illuminance or temperature sensors and can be realized using a low-cost digital signal controller. According to the simulation results, the proposed method has the best performance among all methods in terms of tracking speed, tracking accuracy, and tracking loss for all the three tested shading patterns (SPs). The simulated results of 252 SPs show that the performance indexes (PIs) of the proposed method are the best among all the compared methods, which are: the average tracking time 0.18 seconds, average power loss 0.01 W. In addition, the proposed method can correctly predict the GMPP positions of all 252 SPs. Furthermore, the PIs of the proposed method are also the best among all the compared methods according to the experimental results, which are: the tracking speed 0.21 seconds, tracking accuracy 99.66%, and tracking loss 12.58 W, all the above are average values.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>global maximum power point tracking (GMPPT)</subject><subject>Illuminance</subject><subject>Maximum power point trackers</subject><subject>Maximum power tracking</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Performance indices</subject><subject>photovoltaic (PV)</subject><subject>Photovoltaic systems</subject><subject>Shading</subject><subject>Solar panels</subject><subject>Temperature requirements</subject><subject>Temperature sensors</subject><subject>Voltage control</subject><subject>Voltage measurement</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1rAjEQhkNpoWL9AYUeAj2vzdfuJkcr1hbULrh6DTEfdWXd2GRb6r_vilI6lxmG552BB4B7jIYYI_FULsvJkCBCh5RwxrPsCvSwYCKhiObXfzMRt2AQ4w51RSnNKOqB9Qgu_Let4WixSJ5VtAZO50VRwrltt95A5wMs1nB5jK3dR7hqjA1w7PeH2v7AQoW2UjVcbpWpmo9u35iqrXwT78CNU3W0g0vvg9XLpBy_JrP36dt4NEs0EaxNmGKOU0UsTnG-wRhnuWM6s8QxhzOUpRutjDYdZJnAgnMnDE-JZukmNyrVtA8ez3cPwX9-2djKnf8KTfdSEoFYygUloqPwmdLBxxisk4dQ7VU4SozkyaA8GZQng_JisMs8nDOVtfYfjxnnCNNfOMxqwQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Ye, Song-Pei</creator><creator>Liu, Yi-Hua</creator><creator>Pai, Hung-Yu</creator><creator>Sangwongwanich, Ariya</creator><creator>Blaabjerg, Frede</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2587-0024</orcidid><orcidid>https://orcid.org/0000-0001-7593-0155</orcidid><orcidid>https://orcid.org/0000-0001-8311-7412</orcidid></search><sort><creationdate>202401</creationdate><title>A Novel ANN-Based GMPPT Method for PV Systems Under Complex Partial Shading Conditions</title><author>Ye, Song-Pei ; Liu, Yi-Hua ; Pai, Hung-Yu ; Sangwongwanich, Ariya ; Blaabjerg, Frede</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4a4f83a2e1517b11167f4c6e2f4f16065bcadcd4f8e491988f9d852c45b7da5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>global maximum power point tracking (GMPPT)</topic><topic>Illuminance</topic><topic>Maximum power point trackers</topic><topic>Maximum power tracking</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Performance indices</topic><topic>photovoltaic (PV)</topic><topic>Photovoltaic systems</topic><topic>Shading</topic><topic>Solar panels</topic><topic>Temperature requirements</topic><topic>Temperature sensors</topic><topic>Voltage control</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Song-Pei</creatorcontrib><creatorcontrib>Liu, Yi-Hua</creatorcontrib><creatorcontrib>Pai, Hung-Yu</creatorcontrib><creatorcontrib>Sangwongwanich, Ariya</creatorcontrib><creatorcontrib>Blaabjerg, Frede</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Song-Pei</au><au>Liu, Yi-Hua</au><au>Pai, Hung-Yu</au><au>Sangwongwanich, Ariya</au><au>Blaabjerg, Frede</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel ANN-Based GMPPT Method for PV Systems Under Complex Partial Shading Conditions</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2024-01</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>328</spage><epage>338</epage><pages>328-338</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>In this article, a new two-stage global maximum power point tracking (GMPPT) algorithm based on artificial neural network (ANN) is proposed. The novel ANN architecture is presented first, which requires fewer sampling points than other ANN-based GMPPT approaches, thereby reducing both the tracking time and power loss involved in the tracking. In addition, it does not require costly illuminance or temperature sensors and can be realized using a low-cost digital signal controller. According to the simulation results, the proposed method has the best performance among all methods in terms of tracking speed, tracking accuracy, and tracking loss for all the three tested shading patterns (SPs). The simulated results of 252 SPs show that the performance indexes (PIs) of the proposed method are the best among all the compared methods, which are: the average tracking time 0.18 seconds, average power loss 0.01 W. In addition, the proposed method can correctly predict the GMPP positions of all 252 SPs. Furthermore, the PIs of the proposed method are also the best among all the compared methods according to the experimental results, which are: the tracking speed 0.21 seconds, tracking accuracy 99.66%, and tracking loss 12.58 W, all the above are average values.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2023.3284866</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2587-0024</orcidid><orcidid>https://orcid.org/0000-0001-7593-0155</orcidid><orcidid>https://orcid.org/0000-0001-8311-7412</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2024-01, Vol.15 (1), p.328-338
issn 1949-3029
1949-3037
language eng
recordid cdi_proquest_journals_2904589329
source IEEE Xplore (Online service)
subjects Accuracy
Algorithms
Artificial neural network (ANN)
Artificial neural networks
Computer simulation
global maximum power point tracking (GMPPT)
Illuminance
Maximum power point trackers
Maximum power tracking
Neural networks
Performance evaluation
Performance indices
photovoltaic (PV)
Photovoltaic systems
Shading
Solar panels
Temperature requirements
Temperature sensors
Voltage control
Voltage measurement
title A Novel ANN-Based GMPPT Method for PV Systems Under Complex Partial Shading Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20ANN-Based%20GMPPT%20Method%20for%20PV%20Systems%20Under%20Complex%20Partial%20Shading%20Conditions&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Ye,%20Song-Pei&rft.date=2024-01&rft.volume=15&rft.issue=1&rft.spage=328&rft.epage=338&rft.pages=328-338&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2023.3284866&rft_dat=%3Cproquest_cross%3E2904589329%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-4a4f83a2e1517b11167f4c6e2f4f16065bcadcd4f8e491988f9d852c45b7da5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904589329&rft_id=info:pmid/&rft_ieee_id=10148801&rfr_iscdi=true