Loading…
A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction
Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale da...
Saved in:
Published in: | IEEE access 2023, Vol.11, p.141289-141298 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3 |
container_end_page | 141298 |
container_issue | |
container_start_page | 141289 |
container_title | IEEE access |
container_volume | 11 |
creator | Rosero, Karen Parra, Carla Grijalva, Felipe Larco, Julio Cesar Lara-Cueva, Roman Garzon, Nathaly Orozco |
description | Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale data. This paper presents a novel approach for the automated detection of microseismic events associated with volcanic activity, focusing on the Cotopaxi volcano in Ecuador. Inspired by voice activity detection (VAD) systems used in speech processing, we propose an Adaptive-Microseismic Activity Detector (A-MAD) that modifies VAD techniques to identify frames within seismic signals containing volcanic activity. The A-MAD system incorporates a spectral subtraction stage to mitigate the impact of environmental noise and employs Gaussian Mixture Models (GMMs) to model the probabilistic distribution of microseismic events. Mel Frequency Cepstral Coefficients (MFCCs) are used as features to describe the seismic signals, enabling adaptability for varying noise levels. Experimental results on signals from Cotopaxi Volcano in Ecuador demonstrate the effectiveness of the A-MAD system, achieving high accuracy (96.39% for discrete events and 98.45% for continuous signals) while meeting the efficiency requirements of volcano monitoring institutions. This work contributes to the advancement of early warning systems for volcanic eruptions, providing a robust and adaptive approach for microseismic activity detection. |
doi_str_mv | 10.1109/ACCESS.2023.3342046 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904613717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10354329</ieee_id><doaj_id>oai_doaj_org_article_78972d6c030145649e86c65ba6e593bc</doaj_id><sourcerecordid>2904613717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3</originalsourceid><addsrcrecordid>eNpNUU1v1DAQjRBIVKW_AA6WOGex429uYVtKpa44LJytiT1BXrbxYieI_nu8pEKdy4ye3nszmtc0bxndMEbth367vdnvNx3t-IZz0VGhXjQXHVO25ZKrl8_m181VKQday1RI6ovmZ9_u-uuPpJ9IH-A0x9_Y7qLPqWAsD9GT3lcszo_kGmf0c8rkExQMJE3kFpZSIkxkF__MS0aySwGPhcAUyP5UyRmOZL8MtVeTNL1pXo1wLHj11C-b759vvm2_tPdfb--2_X3rubRza1FYq0OgQvoOjPR6ZJqBriczYc3IRq2F4aPm2g5UgjABRjUag4M3AwR-2dytviHBwZ1yfID86BJE9w9I-YeDPEd_RKeN1V1QnnLKhFTColFeyQEUSssHX73er16nnH4tWGZ3SEue6vmus_XTjGumK4uvrPPjSsbx_1ZG3Tkkt4bkziG5p5Cq6t2qioj4TMGl4J3lfwG2A4xv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904613717</pqid></control><display><type>article</type><title>A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction</title><source>IEEE Open Access Journals</source><creator>Rosero, Karen ; Parra, Carla ; Grijalva, Felipe ; Larco, Julio Cesar ; Lara-Cueva, Roman ; Garzon, Nathaly Orozco</creator><creatorcontrib>Rosero, Karen ; Parra, Carla ; Grijalva, Felipe ; Larco, Julio Cesar ; Lara-Cueva, Roman ; Garzon, Nathaly Orozco</creatorcontrib><description>Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale data. This paper presents a novel approach for the automated detection of microseismic events associated with volcanic activity, focusing on the Cotopaxi volcano in Ecuador. Inspired by voice activity detection (VAD) systems used in speech processing, we propose an Adaptive-Microseismic Activity Detector (A-MAD) that modifies VAD techniques to identify frames within seismic signals containing volcanic activity. The A-MAD system incorporates a spectral subtraction stage to mitigate the impact of environmental noise and employs Gaussian Mixture Models (GMMs) to model the probabilistic distribution of microseismic events. Mel Frequency Cepstral Coefficients (MFCCs) are used as features to describe the seismic signals, enabling adaptability for varying noise levels. Experimental results on signals from Cotopaxi Volcano in Ecuador demonstrate the effectiveness of the A-MAD system, achieving high accuracy (96.39% for discrete events and 98.45% for continuous signals) while meeting the efficiency requirements of volcano monitoring institutions. This work contributes to the advancement of early warning systems for volcanic eruptions, providing a robust and adaptive approach for microseismic activity detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3342046</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automation ; Background noise ; Detectors ; Early warning systems ; Event detection ; Gaussian mixture models ; Hidden Markov models ; Microseisms ; Monitoring ; Noise levels ; Probabilistic models ; Real-time systems ; Seismic activity ; Signal to noise ratio ; Speech processing ; Voice activity detectors ; Voice recognition ; Volcanic activity ; Volcanic eruptions ; Volcanic seismic events ; volcano monitoring ; Volcanoes</subject><ispartof>IEEE access, 2023, Vol.11, p.141289-141298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3</cites><orcidid>0000-0001-6162-3429 ; 0000-0001-8848-9928 ; 0000-0002-5232-7529 ; 0000-0003-4789-5983 ; 0000-0002-8118-4213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10354329$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rosero, Karen</creatorcontrib><creatorcontrib>Parra, Carla</creatorcontrib><creatorcontrib>Grijalva, Felipe</creatorcontrib><creatorcontrib>Larco, Julio Cesar</creatorcontrib><creatorcontrib>Lara-Cueva, Roman</creatorcontrib><creatorcontrib>Garzon, Nathaly Orozco</creatorcontrib><title>A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction</title><title>IEEE access</title><addtitle>Access</addtitle><description>Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale data. This paper presents a novel approach for the automated detection of microseismic events associated with volcanic activity, focusing on the Cotopaxi volcano in Ecuador. Inspired by voice activity detection (VAD) systems used in speech processing, we propose an Adaptive-Microseismic Activity Detector (A-MAD) that modifies VAD techniques to identify frames within seismic signals containing volcanic activity. The A-MAD system incorporates a spectral subtraction stage to mitigate the impact of environmental noise and employs Gaussian Mixture Models (GMMs) to model the probabilistic distribution of microseismic events. Mel Frequency Cepstral Coefficients (MFCCs) are used as features to describe the seismic signals, enabling adaptability for varying noise levels. Experimental results on signals from Cotopaxi Volcano in Ecuador demonstrate the effectiveness of the A-MAD system, achieving high accuracy (96.39% for discrete events and 98.45% for continuous signals) while meeting the efficiency requirements of volcano monitoring institutions. This work contributes to the advancement of early warning systems for volcanic eruptions, providing a robust and adaptive approach for microseismic activity detection.</description><subject>Automation</subject><subject>Background noise</subject><subject>Detectors</subject><subject>Early warning systems</subject><subject>Event detection</subject><subject>Gaussian mixture models</subject><subject>Hidden Markov models</subject><subject>Microseisms</subject><subject>Monitoring</subject><subject>Noise levels</subject><subject>Probabilistic models</subject><subject>Real-time systems</subject><subject>Seismic activity</subject><subject>Signal to noise ratio</subject><subject>Speech processing</subject><subject>Voice activity detectors</subject><subject>Voice recognition</subject><subject>Volcanic activity</subject><subject>Volcanic eruptions</subject><subject>Volcanic seismic events</subject><subject>volcano monitoring</subject><subject>Volcanoes</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAQjRBIVKW_AA6WOGex429uYVtKpa44LJytiT1BXrbxYieI_nu8pEKdy4ye3nszmtc0bxndMEbth367vdnvNx3t-IZz0VGhXjQXHVO25ZKrl8_m181VKQday1RI6ovmZ9_u-uuPpJ9IH-A0x9_Y7qLPqWAsD9GT3lcszo_kGmf0c8rkExQMJE3kFpZSIkxkF__MS0aySwGPhcAUyP5UyRmOZL8MtVeTNL1pXo1wLHj11C-b759vvm2_tPdfb--2_X3rubRza1FYq0OgQvoOjPR6ZJqBriczYc3IRq2F4aPm2g5UgjABRjUag4M3AwR-2dytviHBwZ1yfID86BJE9w9I-YeDPEd_RKeN1V1QnnLKhFTColFeyQEUSssHX73er16nnH4tWGZ3SEue6vmus_XTjGumK4uvrPPjSsbx_1ZG3Tkkt4bkziG5p5Cq6t2qioj4TMGl4J3lfwG2A4xv</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rosero, Karen</creator><creator>Parra, Carla</creator><creator>Grijalva, Felipe</creator><creator>Larco, Julio Cesar</creator><creator>Lara-Cueva, Roman</creator><creator>Garzon, Nathaly Orozco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6162-3429</orcidid><orcidid>https://orcid.org/0000-0001-8848-9928</orcidid><orcidid>https://orcid.org/0000-0002-5232-7529</orcidid><orcidid>https://orcid.org/0000-0003-4789-5983</orcidid><orcidid>https://orcid.org/0000-0002-8118-4213</orcidid></search><sort><creationdate>2023</creationdate><title>A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction</title><author>Rosero, Karen ; Parra, Carla ; Grijalva, Felipe ; Larco, Julio Cesar ; Lara-Cueva, Roman ; Garzon, Nathaly Orozco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Background noise</topic><topic>Detectors</topic><topic>Early warning systems</topic><topic>Event detection</topic><topic>Gaussian mixture models</topic><topic>Hidden Markov models</topic><topic>Microseisms</topic><topic>Monitoring</topic><topic>Noise levels</topic><topic>Probabilistic models</topic><topic>Real-time systems</topic><topic>Seismic activity</topic><topic>Signal to noise ratio</topic><topic>Speech processing</topic><topic>Voice activity detectors</topic><topic>Voice recognition</topic><topic>Volcanic activity</topic><topic>Volcanic eruptions</topic><topic>Volcanic seismic events</topic><topic>volcano monitoring</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosero, Karen</creatorcontrib><creatorcontrib>Parra, Carla</creatorcontrib><creatorcontrib>Grijalva, Felipe</creatorcontrib><creatorcontrib>Larco, Julio Cesar</creatorcontrib><creatorcontrib>Lara-Cueva, Roman</creatorcontrib><creatorcontrib>Garzon, Nathaly Orozco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosero, Karen</au><au>Parra, Carla</au><au>Grijalva, Felipe</au><au>Larco, Julio Cesar</au><au>Lara-Cueva, Roman</au><au>Garzon, Nathaly Orozco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>141289</spage><epage>141298</epage><pages>141289-141298</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale data. This paper presents a novel approach for the automated detection of microseismic events associated with volcanic activity, focusing on the Cotopaxi volcano in Ecuador. Inspired by voice activity detection (VAD) systems used in speech processing, we propose an Adaptive-Microseismic Activity Detector (A-MAD) that modifies VAD techniques to identify frames within seismic signals containing volcanic activity. The A-MAD system incorporates a spectral subtraction stage to mitigate the impact of environmental noise and employs Gaussian Mixture Models (GMMs) to model the probabilistic distribution of microseismic events. Mel Frequency Cepstral Coefficients (MFCCs) are used as features to describe the seismic signals, enabling adaptability for varying noise levels. Experimental results on signals from Cotopaxi Volcano in Ecuador demonstrate the effectiveness of the A-MAD system, achieving high accuracy (96.39% for discrete events and 98.45% for continuous signals) while meeting the efficiency requirements of volcano monitoring institutions. This work contributes to the advancement of early warning systems for volcanic eruptions, providing a robust and adaptive approach for microseismic activity detection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3342046</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6162-3429</orcidid><orcidid>https://orcid.org/0000-0001-8848-9928</orcidid><orcidid>https://orcid.org/0000-0002-5232-7529</orcidid><orcidid>https://orcid.org/0000-0003-4789-5983</orcidid><orcidid>https://orcid.org/0000-0002-8118-4213</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.141289-141298 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2904613717 |
source | IEEE Open Access Journals |
subjects | Automation Background noise Detectors Early warning systems Event detection Gaussian mixture models Hidden Markov models Microseisms Monitoring Noise levels Probabilistic models Real-time systems Seismic activity Signal to noise ratio Speech processing Voice activity detectors Voice recognition Volcanic activity Volcanic eruptions Volcanic seismic events volcano monitoring Volcanoes |
title | A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A-MAD:%20An%20Adaptive-Microseismic%20Activity%20Detector%20Based%20on%20Gaussian%20Mixture%20Models%20and%20Spectral%20Subtraction&rft.jtitle=IEEE%20access&rft.au=Rosero,%20Karen&rft.date=2023&rft.volume=11&rft.spage=141289&rft.epage=141298&rft.pages=141289-141298&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3342046&rft_dat=%3Cproquest_cross%3E2904613717%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904613717&rft_id=info:pmid/&rft_ieee_id=10354329&rfr_iscdi=true |