Loading…

A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction

Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale da...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023, Vol.11, p.141289-141298
Main Authors: Rosero, Karen, Parra, Carla, Grijalva, Felipe, Larco, Julio Cesar, Lara-Cueva, Roman, Garzon, Nathaly Orozco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3
container_end_page 141298
container_issue
container_start_page 141289
container_title IEEE access
container_volume 11
creator Rosero, Karen
Parra, Carla
Grijalva, Felipe
Larco, Julio Cesar
Lara-Cueva, Roman
Garzon, Nathaly Orozco
description Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale data. This paper presents a novel approach for the automated detection of microseismic events associated with volcanic activity, focusing on the Cotopaxi volcano in Ecuador. Inspired by voice activity detection (VAD) systems used in speech processing, we propose an Adaptive-Microseismic Activity Detector (A-MAD) that modifies VAD techniques to identify frames within seismic signals containing volcanic activity. The A-MAD system incorporates a spectral subtraction stage to mitigate the impact of environmental noise and employs Gaussian Mixture Models (GMMs) to model the probabilistic distribution of microseismic events. Mel Frequency Cepstral Coefficients (MFCCs) are used as features to describe the seismic signals, enabling adaptability for varying noise levels. Experimental results on signals from Cotopaxi Volcano in Ecuador demonstrate the effectiveness of the A-MAD system, achieving high accuracy (96.39% for discrete events and 98.45% for continuous signals) while meeting the efficiency requirements of volcano monitoring institutions. This work contributes to the advancement of early warning systems for volcanic eruptions, providing a robust and adaptive approach for microseismic activity detection.
doi_str_mv 10.1109/ACCESS.2023.3342046
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904613717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10354329</ieee_id><doaj_id>oai_doaj_org_article_78972d6c030145649e86c65ba6e593bc</doaj_id><sourcerecordid>2904613717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3</originalsourceid><addsrcrecordid>eNpNUU1v1DAQjRBIVKW_AA6WOGex429uYVtKpa44LJytiT1BXrbxYieI_nu8pEKdy4ye3nszmtc0bxndMEbth367vdnvNx3t-IZz0VGhXjQXHVO25ZKrl8_m181VKQday1RI6ovmZ9_u-uuPpJ9IH-A0x9_Y7qLPqWAsD9GT3lcszo_kGmf0c8rkExQMJE3kFpZSIkxkF__MS0aySwGPhcAUyP5UyRmOZL8MtVeTNL1pXo1wLHj11C-b759vvm2_tPdfb--2_X3rubRza1FYq0OgQvoOjPR6ZJqBriczYc3IRq2F4aPm2g5UgjABRjUag4M3AwR-2dytviHBwZ1yfID86BJE9w9I-YeDPEd_RKeN1V1QnnLKhFTColFeyQEUSssHX73er16nnH4tWGZ3SEue6vmus_XTjGumK4uvrPPjSsbx_1ZG3Tkkt4bkziG5p5Cq6t2qioj4TMGl4J3lfwG2A4xv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904613717</pqid></control><display><type>article</type><title>A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction</title><source>IEEE Open Access Journals</source><creator>Rosero, Karen ; Parra, Carla ; Grijalva, Felipe ; Larco, Julio Cesar ; Lara-Cueva, Roman ; Garzon, Nathaly Orozco</creator><creatorcontrib>Rosero, Karen ; Parra, Carla ; Grijalva, Felipe ; Larco, Julio Cesar ; Lara-Cueva, Roman ; Garzon, Nathaly Orozco</creatorcontrib><description>Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale data. This paper presents a novel approach for the automated detection of microseismic events associated with volcanic activity, focusing on the Cotopaxi volcano in Ecuador. Inspired by voice activity detection (VAD) systems used in speech processing, we propose an Adaptive-Microseismic Activity Detector (A-MAD) that modifies VAD techniques to identify frames within seismic signals containing volcanic activity. The A-MAD system incorporates a spectral subtraction stage to mitigate the impact of environmental noise and employs Gaussian Mixture Models (GMMs) to model the probabilistic distribution of microseismic events. Mel Frequency Cepstral Coefficients (MFCCs) are used as features to describe the seismic signals, enabling adaptability for varying noise levels. Experimental results on signals from Cotopaxi Volcano in Ecuador demonstrate the effectiveness of the A-MAD system, achieving high accuracy (96.39% for discrete events and 98.45% for continuous signals) while meeting the efficiency requirements of volcano monitoring institutions. This work contributes to the advancement of early warning systems for volcanic eruptions, providing a robust and adaptive approach for microseismic activity detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3342046</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automation ; Background noise ; Detectors ; Early warning systems ; Event detection ; Gaussian mixture models ; Hidden Markov models ; Microseisms ; Monitoring ; Noise levels ; Probabilistic models ; Real-time systems ; Seismic activity ; Signal to noise ratio ; Speech processing ; Voice activity detectors ; Voice recognition ; Volcanic activity ; Volcanic eruptions ; Volcanic seismic events ; volcano monitoring ; Volcanoes</subject><ispartof>IEEE access, 2023, Vol.11, p.141289-141298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3</cites><orcidid>0000-0001-6162-3429 ; 0000-0001-8848-9928 ; 0000-0002-5232-7529 ; 0000-0003-4789-5983 ; 0000-0002-8118-4213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10354329$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rosero, Karen</creatorcontrib><creatorcontrib>Parra, Carla</creatorcontrib><creatorcontrib>Grijalva, Felipe</creatorcontrib><creatorcontrib>Larco, Julio Cesar</creatorcontrib><creatorcontrib>Lara-Cueva, Roman</creatorcontrib><creatorcontrib>Garzon, Nathaly Orozco</creatorcontrib><title>A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction</title><title>IEEE access</title><addtitle>Access</addtitle><description>Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale data. This paper presents a novel approach for the automated detection of microseismic events associated with volcanic activity, focusing on the Cotopaxi volcano in Ecuador. Inspired by voice activity detection (VAD) systems used in speech processing, we propose an Adaptive-Microseismic Activity Detector (A-MAD) that modifies VAD techniques to identify frames within seismic signals containing volcanic activity. The A-MAD system incorporates a spectral subtraction stage to mitigate the impact of environmental noise and employs Gaussian Mixture Models (GMMs) to model the probabilistic distribution of microseismic events. Mel Frequency Cepstral Coefficients (MFCCs) are used as features to describe the seismic signals, enabling adaptability for varying noise levels. Experimental results on signals from Cotopaxi Volcano in Ecuador demonstrate the effectiveness of the A-MAD system, achieving high accuracy (96.39% for discrete events and 98.45% for continuous signals) while meeting the efficiency requirements of volcano monitoring institutions. This work contributes to the advancement of early warning systems for volcanic eruptions, providing a robust and adaptive approach for microseismic activity detection.</description><subject>Automation</subject><subject>Background noise</subject><subject>Detectors</subject><subject>Early warning systems</subject><subject>Event detection</subject><subject>Gaussian mixture models</subject><subject>Hidden Markov models</subject><subject>Microseisms</subject><subject>Monitoring</subject><subject>Noise levels</subject><subject>Probabilistic models</subject><subject>Real-time systems</subject><subject>Seismic activity</subject><subject>Signal to noise ratio</subject><subject>Speech processing</subject><subject>Voice activity detectors</subject><subject>Voice recognition</subject><subject>Volcanic activity</subject><subject>Volcanic eruptions</subject><subject>Volcanic seismic events</subject><subject>volcano monitoring</subject><subject>Volcanoes</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAQjRBIVKW_AA6WOGex429uYVtKpa44LJytiT1BXrbxYieI_nu8pEKdy4ye3nszmtc0bxndMEbth367vdnvNx3t-IZz0VGhXjQXHVO25ZKrl8_m181VKQday1RI6ovmZ9_u-uuPpJ9IH-A0x9_Y7qLPqWAsD9GT3lcszo_kGmf0c8rkExQMJE3kFpZSIkxkF__MS0aySwGPhcAUyP5UyRmOZL8MtVeTNL1pXo1wLHj11C-b759vvm2_tPdfb--2_X3rubRza1FYq0OgQvoOjPR6ZJqBriczYc3IRq2F4aPm2g5UgjABRjUag4M3AwR-2dytviHBwZ1yfID86BJE9w9I-YeDPEd_RKeN1V1QnnLKhFTColFeyQEUSssHX73er16nnH4tWGZ3SEue6vmus_XTjGumK4uvrPPjSsbx_1ZG3Tkkt4bkziG5p5Cq6t2qioj4TMGl4J3lfwG2A4xv</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rosero, Karen</creator><creator>Parra, Carla</creator><creator>Grijalva, Felipe</creator><creator>Larco, Julio Cesar</creator><creator>Lara-Cueva, Roman</creator><creator>Garzon, Nathaly Orozco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6162-3429</orcidid><orcidid>https://orcid.org/0000-0001-8848-9928</orcidid><orcidid>https://orcid.org/0000-0002-5232-7529</orcidid><orcidid>https://orcid.org/0000-0003-4789-5983</orcidid><orcidid>https://orcid.org/0000-0002-8118-4213</orcidid></search><sort><creationdate>2023</creationdate><title>A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction</title><author>Rosero, Karen ; Parra, Carla ; Grijalva, Felipe ; Larco, Julio Cesar ; Lara-Cueva, Roman ; Garzon, Nathaly Orozco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Background noise</topic><topic>Detectors</topic><topic>Early warning systems</topic><topic>Event detection</topic><topic>Gaussian mixture models</topic><topic>Hidden Markov models</topic><topic>Microseisms</topic><topic>Monitoring</topic><topic>Noise levels</topic><topic>Probabilistic models</topic><topic>Real-time systems</topic><topic>Seismic activity</topic><topic>Signal to noise ratio</topic><topic>Speech processing</topic><topic>Voice activity detectors</topic><topic>Voice recognition</topic><topic>Volcanic activity</topic><topic>Volcanic eruptions</topic><topic>Volcanic seismic events</topic><topic>volcano monitoring</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosero, Karen</creatorcontrib><creatorcontrib>Parra, Carla</creatorcontrib><creatorcontrib>Grijalva, Felipe</creatorcontrib><creatorcontrib>Larco, Julio Cesar</creatorcontrib><creatorcontrib>Lara-Cueva, Roman</creatorcontrib><creatorcontrib>Garzon, Nathaly Orozco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosero, Karen</au><au>Parra, Carla</au><au>Grijalva, Felipe</au><au>Larco, Julio Cesar</au><au>Lara-Cueva, Roman</au><au>Garzon, Nathaly Orozco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>141289</spage><epage>141298</epage><pages>141289-141298</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Continuous monitoring of active volcanoes is essential for understanding their behavior and providing accurate forecasts and warnings. Automating the detection of volcano microseismic events plays a crucial role in large-scale analysis, early warning systems, and efficient handling of large-scale data. This paper presents a novel approach for the automated detection of microseismic events associated with volcanic activity, focusing on the Cotopaxi volcano in Ecuador. Inspired by voice activity detection (VAD) systems used in speech processing, we propose an Adaptive-Microseismic Activity Detector (A-MAD) that modifies VAD techniques to identify frames within seismic signals containing volcanic activity. The A-MAD system incorporates a spectral subtraction stage to mitigate the impact of environmental noise and employs Gaussian Mixture Models (GMMs) to model the probabilistic distribution of microseismic events. Mel Frequency Cepstral Coefficients (MFCCs) are used as features to describe the seismic signals, enabling adaptability for varying noise levels. Experimental results on signals from Cotopaxi Volcano in Ecuador demonstrate the effectiveness of the A-MAD system, achieving high accuracy (96.39% for discrete events and 98.45% for continuous signals) while meeting the efficiency requirements of volcano monitoring institutions. This work contributes to the advancement of early warning systems for volcanic eruptions, providing a robust and adaptive approach for microseismic activity detection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3342046</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6162-3429</orcidid><orcidid>https://orcid.org/0000-0001-8848-9928</orcidid><orcidid>https://orcid.org/0000-0002-5232-7529</orcidid><orcidid>https://orcid.org/0000-0003-4789-5983</orcidid><orcidid>https://orcid.org/0000-0002-8118-4213</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.141289-141298
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2904613717
source IEEE Open Access Journals
subjects Automation
Background noise
Detectors
Early warning systems
Event detection
Gaussian mixture models
Hidden Markov models
Microseisms
Monitoring
Noise levels
Probabilistic models
Real-time systems
Seismic activity
Signal to noise ratio
Speech processing
Voice activity detectors
Voice recognition
Volcanic activity
Volcanic eruptions
Volcanic seismic events
volcano monitoring
Volcanoes
title A-MAD: An Adaptive-Microseismic Activity Detector Based on Gaussian Mixture Models and Spectral Subtraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A-MAD:%20An%20Adaptive-Microseismic%20Activity%20Detector%20Based%20on%20Gaussian%20Mixture%20Models%20and%20Spectral%20Subtraction&rft.jtitle=IEEE%20access&rft.au=Rosero,%20Karen&rft.date=2023&rft.volume=11&rft.spage=141289&rft.epage=141298&rft.pages=141289-141298&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3342046&rft_dat=%3Cproquest_cross%3E2904613717%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-9e4997dd045c2a85c7f171a78161498f1f77483f7379b05a48daf6f88ebc8bad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904613717&rft_id=info:pmid/&rft_ieee_id=10354329&rfr_iscdi=true