Loading…

A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control

Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain unde...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2024-01, Vol.15 (1), p.1-1
Main Authors: Shereen, Ezzeldin, Kazari, Kiarash, Dan, Gyorgy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE transactions on smart grid
container_volume 15
creator Shereen, Ezzeldin
Kazari, Kiarash
Dan, Gyorgy
description Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain undetected by traditional detection methods based on the area control error (ACE) and the recently proposed unknown input observer (UIO). We formulate the problem of computing undetectable attacks as a multi-objective partially observable Markov decision process. We propose a flexible reward function that allows to explore the trade-off between attack impact and detectability, and use the proximal policy optimization (PPO) algorithm for learning efficient attack policies. Through extensive simulations of a 3-area power system, we show that the proposed attacks can drive the frequency beyond critical limits, while remaining undetectable by state-of-the-art algorithms employed for fault and attack detection in AGC. Our results also show that detectors trained using supervised and unsupervised machine learning can both significantly outperform existing detectors.
doi_str_mv 10.1109/TSG.2023.3288676
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2904667998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10159364</ieee_id><sourcerecordid>2904667998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhRdRsKh3Dx4CnrcmO5vs5rhUrUJB0OrRkM3O1rVtUpMU8d-b0iLOZR7MN4-Zl2WXjI4Zo_Jm_jIdF7SAMRR1LSpxlI2YLGUOVLDjP83hNLsI4ZOmAgBRyFH23pBnHGzvvME12khmqL0d7II0m4132nyQ6Mir7TCiibpdIWli1GYZiF7owYZImm10ax0HQ6Zo0SflLJk4G71bnWcnvV4FvDj0s-z1_m4-echnT9PHSTPLDRQ85hw6zjlCy7RBxtrW6EJ2FULPJa96rE3HmYD0axoIVnWyFMZUNSAY1nU9nGX53jd842bbqo0f1tr_KKcHdTu8Ncr5hVrGDwUlp7xM_PWeTz9-bTFE9em23qYTVSFpKUQlZZ0ouqeMdyF47P98GVW74FUKXu2CV4fg08rVfmVAxH844xJECb94K3_M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904667998</pqid></control><display><type>article</type><title>A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control</title><source>IEEE Xplore (Online service)</source><creator>Shereen, Ezzeldin ; Kazari, Kiarash ; Dan, Gyorgy</creator><creatorcontrib>Shereen, Ezzeldin ; Kazari, Kiarash ; Dan, Gyorgy</creatorcontrib><description>Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain undetected by traditional detection methods based on the area control error (ACE) and the recently proposed unknown input observer (UIO). We formulate the problem of computing undetectable attacks as a multi-objective partially observable Markov decision process. We propose a flexible reward function that allows to explore the trade-off between attack impact and detectability, and use the proximal policy optimization (PPO) algorithm for learning efficient attack policies. Through extensive simulations of a 3-area power system, we show that the proposed attacks can drive the frequency beyond critical limits, while remaining undetectable by state-of-the-art algorithms employed for fault and attack detection in AGC. Our results also show that detectors trained using supervised and unsupervised machine learning can both significantly outperform existing detectors.</description><identifier>ISSN: 1949-3053</identifier><identifier>ISSN: 1949-3061</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3288676</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automatic control ; Automatic generation control ; Detectors ; False Data Injection Attack ; Frequency measurement ; Generators ; Machine learning ; Markov processes ; Partially Observable Markov Decision Process ; Power measurement ; Power System Security ; Power systems ; Reinforcement Learning ; Transmission line measurements ; Unknown Input Observer ; Unsupervised learning</subject><ispartof>IEEE transactions on smart grid, 2024-01, Vol.15 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3</cites><orcidid>0000-0002-1958-5446 ; 0000-0002-9988-9545 ; 0000-0002-4876-0223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10159364$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-345054$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Shereen, Ezzeldin</creatorcontrib><creatorcontrib>Kazari, Kiarash</creatorcontrib><creatorcontrib>Dan, Gyorgy</creatorcontrib><title>A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain undetected by traditional detection methods based on the area control error (ACE) and the recently proposed unknown input observer (UIO). We formulate the problem of computing undetectable attacks as a multi-objective partially observable Markov decision process. We propose a flexible reward function that allows to explore the trade-off between attack impact and detectability, and use the proximal policy optimization (PPO) algorithm for learning efficient attack policies. Through extensive simulations of a 3-area power system, we show that the proposed attacks can drive the frequency beyond critical limits, while remaining undetectable by state-of-the-art algorithms employed for fault and attack detection in AGC. Our results also show that detectors trained using supervised and unsupervised machine learning can both significantly outperform existing detectors.</description><subject>Algorithms</subject><subject>Automatic control</subject><subject>Automatic generation control</subject><subject>Detectors</subject><subject>False Data Injection Attack</subject><subject>Frequency measurement</subject><subject>Generators</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Partially Observable Markov Decision Process</subject><subject>Power measurement</subject><subject>Power System Security</subject><subject>Power systems</subject><subject>Reinforcement Learning</subject><subject>Transmission line measurements</subject><subject>Unknown Input Observer</subject><subject>Unsupervised learning</subject><issn>1949-3053</issn><issn>1949-3061</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkEFLAzEQhRdRsKh3Dx4CnrcmO5vs5rhUrUJB0OrRkM3O1rVtUpMU8d-b0iLOZR7MN4-Zl2WXjI4Zo_Jm_jIdF7SAMRR1LSpxlI2YLGUOVLDjP83hNLsI4ZOmAgBRyFH23pBnHGzvvME12khmqL0d7II0m4132nyQ6Mir7TCiibpdIWli1GYZiF7owYZImm10ax0HQ6Zo0SflLJk4G71bnWcnvV4FvDj0s-z1_m4-echnT9PHSTPLDRQ85hw6zjlCy7RBxtrW6EJ2FULPJa96rE3HmYD0axoIVnWyFMZUNSAY1nU9nGX53jd842bbqo0f1tr_KKcHdTu8Ncr5hVrGDwUlp7xM_PWeTz9-bTFE9em23qYTVSFpKUQlZZ0ouqeMdyF47P98GVW74FUKXu2CV4fg08rVfmVAxH844xJECb94K3_M</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Shereen, Ezzeldin</creator><creator>Kazari, Kiarash</creator><creator>Dan, Gyorgy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1958-5446</orcidid><orcidid>https://orcid.org/0000-0002-9988-9545</orcidid><orcidid>https://orcid.org/0000-0002-4876-0223</orcidid></search><sort><creationdate>20240101</creationdate><title>A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control</title><author>Shereen, Ezzeldin ; Kazari, Kiarash ; Dan, Gyorgy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Automatic control</topic><topic>Automatic generation control</topic><topic>Detectors</topic><topic>False Data Injection Attack</topic><topic>Frequency measurement</topic><topic>Generators</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Partially Observable Markov Decision Process</topic><topic>Power measurement</topic><topic>Power System Security</topic><topic>Power systems</topic><topic>Reinforcement Learning</topic><topic>Transmission line measurements</topic><topic>Unknown Input Observer</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shereen, Ezzeldin</creatorcontrib><creatorcontrib>Kazari, Kiarash</creatorcontrib><creatorcontrib>Dan, Gyorgy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shereen, Ezzeldin</au><au>Kazari, Kiarash</au><au>Dan, Gyorgy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1949-3053</issn><issn>1949-3061</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain undetected by traditional detection methods based on the area control error (ACE) and the recently proposed unknown input observer (UIO). We formulate the problem of computing undetectable attacks as a multi-objective partially observable Markov decision process. We propose a flexible reward function that allows to explore the trade-off between attack impact and detectability, and use the proximal policy optimization (PPO) algorithm for learning efficient attack policies. Through extensive simulations of a 3-area power system, we show that the proposed attacks can drive the frequency beyond critical limits, while remaining undetectable by state-of-the-art algorithms employed for fault and attack detection in AGC. Our results also show that detectors trained using supervised and unsupervised machine learning can both significantly outperform existing detectors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3288676</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1958-5446</orcidid><orcidid>https://orcid.org/0000-0002-9988-9545</orcidid><orcidid>https://orcid.org/0000-0002-4876-0223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2024-01, Vol.15 (1), p.1-1
issn 1949-3053
1949-3061
1949-3061
language eng
recordid cdi_proquest_journals_2904667998
source IEEE Xplore (Online service)
subjects Algorithms
Automatic control
Automatic generation control
Detectors
False Data Injection Attack
Frequency measurement
Generators
Machine learning
Markov processes
Partially Observable Markov Decision Process
Power measurement
Power System Security
Power systems
Reinforcement Learning
Transmission line measurements
Unknown Input Observer
Unsupervised learning
title A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reinforcement%20Learning%20Approach%20to%20Undetectable%20Attacks%20against%20Automatic%20Generation%20Control&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Shereen,%20Ezzeldin&rft.date=2024-01-01&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3288676&rft_dat=%3Cproquest_ieee_%3E2904667998%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904667998&rft_id=info:pmid/&rft_ieee_id=10159364&rfr_iscdi=true