Loading…
A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control
Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain unde...
Saved in:
Published in: | IEEE transactions on smart grid 2024-01, Vol.15 (1), p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3 |
container_end_page | 1 |
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on smart grid |
container_volume | 15 |
creator | Shereen, Ezzeldin Kazari, Kiarash Dan, Gyorgy |
description | Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain undetected by traditional detection methods based on the area control error (ACE) and the recently proposed unknown input observer (UIO). We formulate the problem of computing undetectable attacks as a multi-objective partially observable Markov decision process. We propose a flexible reward function that allows to explore the trade-off between attack impact and detectability, and use the proximal policy optimization (PPO) algorithm for learning efficient attack policies. Through extensive simulations of a 3-area power system, we show that the proposed attacks can drive the frequency beyond critical limits, while remaining undetectable by state-of-the-art algorithms employed for fault and attack detection in AGC. Our results also show that detectors trained using supervised and unsupervised machine learning can both significantly outperform existing detectors. |
doi_str_mv | 10.1109/TSG.2023.3288676 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2904667998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10159364</ieee_id><sourcerecordid>2904667998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhRdRsKh3Dx4CnrcmO5vs5rhUrUJB0OrRkM3O1rVtUpMU8d-b0iLOZR7MN4-Zl2WXjI4Zo_Jm_jIdF7SAMRR1LSpxlI2YLGUOVLDjP83hNLsI4ZOmAgBRyFH23pBnHGzvvME12khmqL0d7II0m4132nyQ6Mir7TCiibpdIWli1GYZiF7owYZImm10ax0HQ6Zo0SflLJk4G71bnWcnvV4FvDj0s-z1_m4-echnT9PHSTPLDRQ85hw6zjlCy7RBxtrW6EJ2FULPJa96rE3HmYD0axoIVnWyFMZUNSAY1nU9nGX53jd842bbqo0f1tr_KKcHdTu8Ncr5hVrGDwUlp7xM_PWeTz9-bTFE9em23qYTVSFpKUQlZZ0ouqeMdyF47P98GVW74FUKXu2CV4fg08rVfmVAxH844xJECb94K3_M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904667998</pqid></control><display><type>article</type><title>A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control</title><source>IEEE Xplore (Online service)</source><creator>Shereen, Ezzeldin ; Kazari, Kiarash ; Dan, Gyorgy</creator><creatorcontrib>Shereen, Ezzeldin ; Kazari, Kiarash ; Dan, Gyorgy</creatorcontrib><description>Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain undetected by traditional detection methods based on the area control error (ACE) and the recently proposed unknown input observer (UIO). We formulate the problem of computing undetectable attacks as a multi-objective partially observable Markov decision process. We propose a flexible reward function that allows to explore the trade-off between attack impact and detectability, and use the proximal policy optimization (PPO) algorithm for learning efficient attack policies. Through extensive simulations of a 3-area power system, we show that the proposed attacks can drive the frequency beyond critical limits, while remaining undetectable by state-of-the-art algorithms employed for fault and attack detection in AGC. Our results also show that detectors trained using supervised and unsupervised machine learning can both significantly outperform existing detectors.</description><identifier>ISSN: 1949-3053</identifier><identifier>ISSN: 1949-3061</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3288676</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automatic control ; Automatic generation control ; Detectors ; False Data Injection Attack ; Frequency measurement ; Generators ; Machine learning ; Markov processes ; Partially Observable Markov Decision Process ; Power measurement ; Power System Security ; Power systems ; Reinforcement Learning ; Transmission line measurements ; Unknown Input Observer ; Unsupervised learning</subject><ispartof>IEEE transactions on smart grid, 2024-01, Vol.15 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3</cites><orcidid>0000-0002-1958-5446 ; 0000-0002-9988-9545 ; 0000-0002-4876-0223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10159364$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-345054$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Shereen, Ezzeldin</creatorcontrib><creatorcontrib>Kazari, Kiarash</creatorcontrib><creatorcontrib>Dan, Gyorgy</creatorcontrib><title>A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain undetected by traditional detection methods based on the area control error (ACE) and the recently proposed unknown input observer (UIO). We formulate the problem of computing undetectable attacks as a multi-objective partially observable Markov decision process. We propose a flexible reward function that allows to explore the trade-off between attack impact and detectability, and use the proximal policy optimization (PPO) algorithm for learning efficient attack policies. Through extensive simulations of a 3-area power system, we show that the proposed attacks can drive the frequency beyond critical limits, while remaining undetectable by state-of-the-art algorithms employed for fault and attack detection in AGC. Our results also show that detectors trained using supervised and unsupervised machine learning can both significantly outperform existing detectors.</description><subject>Algorithms</subject><subject>Automatic control</subject><subject>Automatic generation control</subject><subject>Detectors</subject><subject>False Data Injection Attack</subject><subject>Frequency measurement</subject><subject>Generators</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Partially Observable Markov Decision Process</subject><subject>Power measurement</subject><subject>Power System Security</subject><subject>Power systems</subject><subject>Reinforcement Learning</subject><subject>Transmission line measurements</subject><subject>Unknown Input Observer</subject><subject>Unsupervised learning</subject><issn>1949-3053</issn><issn>1949-3061</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkEFLAzEQhRdRsKh3Dx4CnrcmO5vs5rhUrUJB0OrRkM3O1rVtUpMU8d-b0iLOZR7MN4-Zl2WXjI4Zo_Jm_jIdF7SAMRR1LSpxlI2YLGUOVLDjP83hNLsI4ZOmAgBRyFH23pBnHGzvvME12khmqL0d7II0m4132nyQ6Mir7TCiibpdIWli1GYZiF7owYZImm10ax0HQ6Zo0SflLJk4G71bnWcnvV4FvDj0s-z1_m4-echnT9PHSTPLDRQ85hw6zjlCy7RBxtrW6EJ2FULPJa96rE3HmYD0axoIVnWyFMZUNSAY1nU9nGX53jd842bbqo0f1tr_KKcHdTu8Ncr5hVrGDwUlp7xM_PWeTz9-bTFE9em23qYTVSFpKUQlZZ0ouqeMdyF47P98GVW74FUKXu2CV4fg08rVfmVAxH844xJECb94K3_M</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Shereen, Ezzeldin</creator><creator>Kazari, Kiarash</creator><creator>Dan, Gyorgy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1958-5446</orcidid><orcidid>https://orcid.org/0000-0002-9988-9545</orcidid><orcidid>https://orcid.org/0000-0002-4876-0223</orcidid></search><sort><creationdate>20240101</creationdate><title>A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control</title><author>Shereen, Ezzeldin ; Kazari, Kiarash ; Dan, Gyorgy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Automatic control</topic><topic>Automatic generation control</topic><topic>Detectors</topic><topic>False Data Injection Attack</topic><topic>Frequency measurement</topic><topic>Generators</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Partially Observable Markov Decision Process</topic><topic>Power measurement</topic><topic>Power System Security</topic><topic>Power systems</topic><topic>Reinforcement Learning</topic><topic>Transmission line measurements</topic><topic>Unknown Input Observer</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shereen, Ezzeldin</creatorcontrib><creatorcontrib>Kazari, Kiarash</creatorcontrib><creatorcontrib>Dan, Gyorgy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shereen, Ezzeldin</au><au>Kazari, Kiarash</au><au>Dan, Gyorgy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1949-3053</issn><issn>1949-3061</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Automatic generation control (AGC) is an essential functionality for ensuring the stability of power systems, and its secure operation is thus of utmost importance to power system operators. In this paper, we investigate the vulnerability of AGC to false data injection attacks that could remain undetected by traditional detection methods based on the area control error (ACE) and the recently proposed unknown input observer (UIO). We formulate the problem of computing undetectable attacks as a multi-objective partially observable Markov decision process. We propose a flexible reward function that allows to explore the trade-off between attack impact and detectability, and use the proximal policy optimization (PPO) algorithm for learning efficient attack policies. Through extensive simulations of a 3-area power system, we show that the proposed attacks can drive the frequency beyond critical limits, while remaining undetectable by state-of-the-art algorithms employed for fault and attack detection in AGC. Our results also show that detectors trained using supervised and unsupervised machine learning can both significantly outperform existing detectors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3288676</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1958-5446</orcidid><orcidid>https://orcid.org/0000-0002-9988-9545</orcidid><orcidid>https://orcid.org/0000-0002-4876-0223</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2024-01, Vol.15 (1), p.1-1 |
issn | 1949-3053 1949-3061 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2904667998 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Automatic control Automatic generation control Detectors False Data Injection Attack Frequency measurement Generators Machine learning Markov processes Partially Observable Markov Decision Process Power measurement Power System Security Power systems Reinforcement Learning Transmission line measurements Unknown Input Observer Unsupervised learning |
title | A Reinforcement Learning Approach to Undetectable Attacks against Automatic Generation Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reinforcement%20Learning%20Approach%20to%20Undetectable%20Attacks%20against%20Automatic%20Generation%20Control&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Shereen,%20Ezzeldin&rft.date=2024-01-01&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3288676&rft_dat=%3Cproquest_ieee_%3E2904667998%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-53d555e3b1ace11bbca29d7e3f5957fe8cd5163110ca2617d946cc783e3c1ddf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904667998&rft_id=info:pmid/&rft_ieee_id=10159364&rfr_iscdi=true |