Loading…
Optimal Control of Hybrid Photovoltaic/Thermal Water System in Solar Panels Using the Linear Parameter Varying Approach
During photovoltaic (PV) conversion in solar panels, a part of the solar radiation is not converted to electricity by the cells, producing heat that could increase their temperature. This increase in temperature deteriorates the performance of the PV panel. In this paper, a hybrid PV/thermal (PV/T)...
Saved in:
Published in: | Processes 2023-12, Vol.11 (12), p.3426 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During photovoltaic (PV) conversion in solar panels, a part of the solar radiation is not converted to electricity by the cells, producing heat that could increase their temperature. This increase in temperature deteriorates the performance of the PV panel. In this paper, a hybrid PV/thermal (PV/T) water system is proposed to mitigate this problem. This system combines a PV panel and a thermal collector. In this paper, we focused on the modeling and control of this hybrid system in the linear parameter varying (LPV) framework. An optimal linear quadratic regulator (LQR) is proposed to control the PV cell temperature around an optimal value that maximises electricity generation. Since the system model is nonlinear, an optimal LQR gain-scheduling state-feedback control approach based on an LPV representation of the nonlinear model is designed using the Linear Matrix Inequality (LMI) method. The goal is to obtain the maximum electrical power for each solar panel. Since a reduced number of sensors is available, an LPV Kalman filter is also proposed to estimate the system states required by the state-feedback controller. The obtained results in a laboratory setup in simulation are used to assess the proposed approach, showing promise in terms of control performance of the PV/T system. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr11123426 |