Loading…

Flowback Characteristics Analysis and Rational Strategy Optimization for Tight Oil Fractured Horizontal Well Pattern in Mahu Sag

With the deep development of tight reservoir in Mahu Sag, the trend of rising water cut during flowback concerns engineers, and its control mechanism is not yet clear. For this purpose, the integrated numerical model of horizontal well pattern from fracturing to production was established, and its a...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2023-12, Vol.11 (12), p.3377
Main Authors: Tian, Hui, Liao, Kai, Liu, Jiakang, Chen, Yuchen, Ma, Jun, Wang, Yipeng, Song, Mingrui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the deep development of tight reservoir in Mahu Sag, the trend of rising water cut during flowback concerns engineers, and its control mechanism is not yet clear. For this purpose, the integrated numerical model of horizontal well pattern from fracturing to production was established, and its applicability has been demonstrated. Then the flowback performance from child wells to parent wells and single well to well pattern was simulated, and the optimization method of reasonable flowback strategy was discussed. The results show that the formation pressure coefficient decreases as well patterns were put into production year by year, so that the seepage driving force of the matrix is weakened. The pressure-sensitive reservoir is also accompanied by the decrease of permeability, resulting in the increase of seepage resistance, which is the key factor causing the prolongation of flowback period. With the synchronous fracturing mode of well patterns, the stimulated reservoir volume (SRV) is greatly increased compared with that of single well, which improves the reservoir recovery. However, when the well spacing is less than 200 m, well interference is easy to occur, resulting in the rapid entry and outflow of fracturing fluid, and the increased water cut during flowback. Additionally, the well patterns in target reservoir should adopt a drawdown management after fracturing, with an aggressive flowback in the early stage and a slow flowback in the middle and late stage. With pressure depletion in different development stages, the pressure drop rate should be further slowed down to ensure stable liquid supply from matrix. This research can provide a theoretical guidance for optimizing the flowback strategy of tight oil wells in Mahu sag.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr11123377