Loading…
Minimal and maximal solution maps of elliptic QVIs: penalisation, Lipschitz stability, differentiability and optimal control
Quasi-variational inequalities (QVIs) of obstacle type in many cases have multiple solutions that can be ordered. We study a multitude of properties of the operator mapping the source term to the minimal or maximal solution of such QVIs. We prove that the solution maps are locally Lipschitz continuo...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Amal Alphonse Hintermüller, Michael Rautenberg, Carlos N Wachsmuth, Gerd |
description | Quasi-variational inequalities (QVIs) of obstacle type in many cases have multiple solutions that can be ordered. We study a multitude of properties of the operator mapping the source term to the minimal or maximal solution of such QVIs. We prove that the solution maps are locally Lipschitz continuous and directionally differentiable and show existence of optimal controls for problems that incorporate these maps as the control-to-state operator. We also consider a Moreau--Yosida-type penalisation for the QVI wherein we show that it is possible to approximate the minimal and maximal solutions by sequences of minimal and maximal solutions (respectively) of certain PDEs, which have a simpler structure and offer a convenient characterisation in particular for computation. For solution mappings of these penalised problems, we prove a number of properties including Lipschitz and differential stability. Making use of the penalised equations, we derive (in the limit) C-stationarity conditions for the control problem, in addition to the Bouligand stationarity we get from the differentiability result. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2904771073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904771073</sourcerecordid><originalsourceid>FETCH-proquest_journals_29047710733</originalsourceid><addsrcrecordid>eNqNjUEKwjAURIMgKNo7fHBrIU3UqltRFHQhiFuJNcUvMYn9Kah4eNviAVzNMDzmtVhXSJnE05EQHRYR3TjnYpKK8Vh22WeHFu_KgLIXuKtn08mZMqCz1eAJXA7aGPQBM9gfNzQHr60ySKpmhrBFT9kVwxsoqDMaDK8hXDDPdaFtwN_UCFx1UgsyZ0PhTJ-1c2VIR7_sscFqeVisY1-4R6kpnG6uLCoXncSMj9I04amU_1FfJQJQEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904771073</pqid></control><display><type>article</type><title>Minimal and maximal solution maps of elliptic QVIs: penalisation, Lipschitz stability, differentiability and optimal control</title><source>Publicly Available Content Database</source><creator>Amal Alphonse ; Hintermüller, Michael ; Rautenberg, Carlos N ; Wachsmuth, Gerd</creator><creatorcontrib>Amal Alphonse ; Hintermüller, Michael ; Rautenberg, Carlos N ; Wachsmuth, Gerd</creatorcontrib><description>Quasi-variational inequalities (QVIs) of obstacle type in many cases have multiple solutions that can be ordered. We study a multitude of properties of the operator mapping the source term to the minimal or maximal solution of such QVIs. We prove that the solution maps are locally Lipschitz continuous and directionally differentiable and show existence of optimal controls for problems that incorporate these maps as the control-to-state operator. We also consider a Moreau--Yosida-type penalisation for the QVI wherein we show that it is possible to approximate the minimal and maximal solutions by sequences of minimal and maximal solutions (respectively) of certain PDEs, which have a simpler structure and offer a convenient characterisation in particular for computation. For solution mappings of these penalised problems, we prove a number of properties including Lipschitz and differential stability. Making use of the penalised equations, we derive (in the limit) C-stationarity conditions for the control problem, in addition to the Bouligand stationarity we get from the differentiability result.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Operators (mathematics) ; Optimal control</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2904771073?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Amal Alphonse</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Rautenberg, Carlos N</creatorcontrib><creatorcontrib>Wachsmuth, Gerd</creatorcontrib><title>Minimal and maximal solution maps of elliptic QVIs: penalisation, Lipschitz stability, differentiability and optimal control</title><title>arXiv.org</title><description>Quasi-variational inequalities (QVIs) of obstacle type in many cases have multiple solutions that can be ordered. We study a multitude of properties of the operator mapping the source term to the minimal or maximal solution of such QVIs. We prove that the solution maps are locally Lipschitz continuous and directionally differentiable and show existence of optimal controls for problems that incorporate these maps as the control-to-state operator. We also consider a Moreau--Yosida-type penalisation for the QVI wherein we show that it is possible to approximate the minimal and maximal solutions by sequences of minimal and maximal solutions (respectively) of certain PDEs, which have a simpler structure and offer a convenient characterisation in particular for computation. For solution mappings of these penalised problems, we prove a number of properties including Lipschitz and differential stability. Making use of the penalised equations, we derive (in the limit) C-stationarity conditions for the control problem, in addition to the Bouligand stationarity we get from the differentiability result.</description><subject>Operators (mathematics)</subject><subject>Optimal control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUEKwjAURIMgKNo7fHBrIU3UqltRFHQhiFuJNcUvMYn9Kah4eNviAVzNMDzmtVhXSJnE05EQHRYR3TjnYpKK8Vh22WeHFu_KgLIXuKtn08mZMqCz1eAJXA7aGPQBM9gfNzQHr60ySKpmhrBFT9kVwxsoqDMaDK8hXDDPdaFtwN_UCFx1UgsyZ0PhTJ-1c2VIR7_sscFqeVisY1-4R6kpnG6uLCoXncSMj9I04amU_1FfJQJQEA</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Amal Alphonse</creator><creator>Hintermüller, Michael</creator><creator>Rautenberg, Carlos N</creator><creator>Wachsmuth, Gerd</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231221</creationdate><title>Minimal and maximal solution maps of elliptic QVIs: penalisation, Lipschitz stability, differentiability and optimal control</title><author>Amal Alphonse ; Hintermüller, Michael ; Rautenberg, Carlos N ; Wachsmuth, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29047710733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Operators (mathematics)</topic><topic>Optimal control</topic><toplevel>online_resources</toplevel><creatorcontrib>Amal Alphonse</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Rautenberg, Carlos N</creatorcontrib><creatorcontrib>Wachsmuth, Gerd</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amal Alphonse</au><au>Hintermüller, Michael</au><au>Rautenberg, Carlos N</au><au>Wachsmuth, Gerd</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Minimal and maximal solution maps of elliptic QVIs: penalisation, Lipschitz stability, differentiability and optimal control</atitle><jtitle>arXiv.org</jtitle><date>2023-12-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Quasi-variational inequalities (QVIs) of obstacle type in many cases have multiple solutions that can be ordered. We study a multitude of properties of the operator mapping the source term to the minimal or maximal solution of such QVIs. We prove that the solution maps are locally Lipschitz continuous and directionally differentiable and show existence of optimal controls for problems that incorporate these maps as the control-to-state operator. We also consider a Moreau--Yosida-type penalisation for the QVI wherein we show that it is possible to approximate the minimal and maximal solutions by sequences of minimal and maximal solutions (respectively) of certain PDEs, which have a simpler structure and offer a convenient characterisation in particular for computation. For solution mappings of these penalised problems, we prove a number of properties including Lipschitz and differential stability. Making use of the penalised equations, we derive (in the limit) C-stationarity conditions for the control problem, in addition to the Bouligand stationarity we get from the differentiability result.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2904771073 |
source | Publicly Available Content Database |
subjects | Operators (mathematics) Optimal control |
title | Minimal and maximal solution maps of elliptic QVIs: penalisation, Lipschitz stability, differentiability and optimal control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Minimal%20and%20maximal%20solution%20maps%20of%20elliptic%20QVIs:%20penalisation,%20Lipschitz%20stability,%20differentiability%20and%20optimal%20control&rft.jtitle=arXiv.org&rft.au=Amal%20Alphonse&rft.date=2023-12-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2904771073%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29047710733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904771073&rft_id=info:pmid/&rfr_iscdi=true |