Loading…
Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries
While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective...
Saved in:
Published in: | Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-11, Vol.6 (6), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | Energy & environmental materials (Hoboken, N.J.) |
container_volume | 6 |
creator | Zhang, Xiangdan Huang, Yuanyuan Hu, Xiaoyi Guo, Ruxin Zhang, Yongshang Wu, Zhiheng Cao, Guoqin Yu, Yuran Wang, Zhuo Shen, Yonglong Shao, Guosheng |
description | While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective approach toward realizing solid sodium ion batteries, using the Na11Sn2PS12 electrolyte and slurry‐coated NASICON‐type Na3MnTi(PO4)3@C as high‐voltage cathode, highly beneficial for low processing cost and high content/loading of active cathode matter. We report that through significantly improved integrity of electrolyte‐cathode interface, such solid sodium ion batteries can deliver outstanding cycling and rate performance, with a charge voltage resilience up to 4.1 V, a high cathode discharge capacity of 128.7 mAh g−1 against the Na3MnTi(PO4)3@C in cathode is achieved at 0.05 C, and capacity retention ratio of 82% with a rate of 0.1 C is realized after prolonged cycling at room temperature. Besides, we demonstrate that such a solid sodium ion battery can even perform at a sub‐zero Celsius temperature of −10°C, when the conventional control cell using liquid electrolyte completely fail to function. This work is to offer a dependable avenue in engineering next generation of safe solid ion batteries based on highly sustainable and much cheaper material resources.
Seamless overlap of electrochemical windows at the cathode‐electrolyte interface to enable high‐voltage resilience of sulfide electrolyte for stable performance of solid sodium ion battery cells. The high ion and electric conductivity of in situ C‐coated Na3MnTi(PO4)3 nano‐composites is fundamental to utilizing desirable slurry‐coated cathode without inclusion of solid electrolyte, thus delivering highly enhanced full‐cathode capacity. |
doi_str_mv | 10.1002/eem2.12477 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2904813040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904813040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCpbai08Q8CZszcfuZnvUstpCRbB-HEM2mW1Tdjd1k1J78xF8Rp_ErfXgSQKTOfxmBv4InVMypISwK4CaDSmLhThCPZaIJCI8SY__9Kdo4P2KdJhQHtNRD6k5qLoC7_E82KCXtllgV-JHMO4dv9rGuK3HweG8UUUFeGIXy6-PzxdXBbWAjnlbWWgCnrvKmq4au6nx1DX4RoUArQV_hk5KVXkY_P599HybP40n0ezhbjq-nkWacyGijBCqSlJmpc6AGp4xlhCjtI5JWqRCxKIUDIwqYsFV94wuMqVHSUo145oWvI8uDnvXrXvbgA9y5TZt052UbETijHISk05dHpRunfctlHLd2lq1O0mJ3Kco9ynKnxQ7TA94ayvY_SNlnt-zw8w3Ez10mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904813040</pqid></control><display><type>article</type><title>Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries</title><source>Wiley Open Access</source><creator>Zhang, Xiangdan ; Huang, Yuanyuan ; Hu, Xiaoyi ; Guo, Ruxin ; Zhang, Yongshang ; Wu, Zhiheng ; Cao, Guoqin ; Yu, Yuran ; Wang, Zhuo ; Shen, Yonglong ; Shao, Guosheng</creator><creatorcontrib>Zhang, Xiangdan ; Huang, Yuanyuan ; Hu, Xiaoyi ; Guo, Ruxin ; Zhang, Yongshang ; Wu, Zhiheng ; Cao, Guoqin ; Yu, Yuran ; Wang, Zhuo ; Shen, Yonglong ; Shao, Guosheng</creatorcontrib><description>While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective approach toward realizing solid sodium ion batteries, using the Na11Sn2PS12 electrolyte and slurry‐coated NASICON‐type Na3MnTi(PO4)3@C as high‐voltage cathode, highly beneficial for low processing cost and high content/loading of active cathode matter. We report that through significantly improved integrity of electrolyte‐cathode interface, such solid sodium ion batteries can deliver outstanding cycling and rate performance, with a charge voltage resilience up to 4.1 V, a high cathode discharge capacity of 128.7 mAh g−1 against the Na3MnTi(PO4)3@C in cathode is achieved at 0.05 C, and capacity retention ratio of 82% with a rate of 0.1 C is realized after prolonged cycling at room temperature. Besides, we demonstrate that such a solid sodium ion battery can even perform at a sub‐zero Celsius temperature of −10°C, when the conventional control cell using liquid electrolyte completely fail to function. This work is to offer a dependable avenue in engineering next generation of safe solid ion batteries based on highly sustainable and much cheaper material resources.
Seamless overlap of electrochemical windows at the cathode‐electrolyte interface to enable high‐voltage resilience of sulfide electrolyte for stable performance of solid sodium ion battery cells. The high ion and electric conductivity of in situ C‐coated Na3MnTi(PO4)3 nano‐composites is fundamental to utilizing desirable slurry‐coated cathode without inclusion of solid electrolyte, thus delivering highly enhanced full‐cathode capacity.</description><identifier>ISSN: 2575-0356</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12477</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Cathodes ; C‐coated NASICON nanocrystals ; Discharge capacity ; Electrolytes ; electrolyte‐electrode interface ; full‐cathode capacity ; High voltages ; Molten salt electrolytes ; Na11Sn2PS12 ; Resilience ; Room temperature ; Slurries ; Sodium ; Sodium channels (voltage-gated) ; Sodium-ion batteries ; Solid electrolytes ; solid sodium‐ion battery ; Stitching</subject><ispartof>Energy & environmental materials (Hoboken, N.J.), 2023-11, Vol.6 (6), p.n/a</ispartof><rights>2022 Zhengzhou University.</rights><rights>2023 Zhengzhou University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3</citedby><cites>FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3</cites><orcidid>0000-0003-1498-7929 ; 0000-0003-4436-9689 ; 0000-0001-6647-7600 ; 0000-0002-4836-0545 ; 0000-0002-0630-5425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12477$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12477$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12477$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Zhang, Xiangdan</creatorcontrib><creatorcontrib>Huang, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Xiaoyi</creatorcontrib><creatorcontrib>Guo, Ruxin</creatorcontrib><creatorcontrib>Zhang, Yongshang</creatorcontrib><creatorcontrib>Wu, Zhiheng</creatorcontrib><creatorcontrib>Cao, Guoqin</creatorcontrib><creatorcontrib>Yu, Yuran</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Shen, Yonglong</creatorcontrib><creatorcontrib>Shao, Guosheng</creatorcontrib><title>Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries</title><title>Energy & environmental materials (Hoboken, N.J.)</title><description>While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective approach toward realizing solid sodium ion batteries, using the Na11Sn2PS12 electrolyte and slurry‐coated NASICON‐type Na3MnTi(PO4)3@C as high‐voltage cathode, highly beneficial for low processing cost and high content/loading of active cathode matter. We report that through significantly improved integrity of electrolyte‐cathode interface, such solid sodium ion batteries can deliver outstanding cycling and rate performance, with a charge voltage resilience up to 4.1 V, a high cathode discharge capacity of 128.7 mAh g−1 against the Na3MnTi(PO4)3@C in cathode is achieved at 0.05 C, and capacity retention ratio of 82% with a rate of 0.1 C is realized after prolonged cycling at room temperature. Besides, we demonstrate that such a solid sodium ion battery can even perform at a sub‐zero Celsius temperature of −10°C, when the conventional control cell using liquid electrolyte completely fail to function. This work is to offer a dependable avenue in engineering next generation of safe solid ion batteries based on highly sustainable and much cheaper material resources.
Seamless overlap of electrochemical windows at the cathode‐electrolyte interface to enable high‐voltage resilience of sulfide electrolyte for stable performance of solid sodium ion battery cells. The high ion and electric conductivity of in situ C‐coated Na3MnTi(PO4)3 nano‐composites is fundamental to utilizing desirable slurry‐coated cathode without inclusion of solid electrolyte, thus delivering highly enhanced full‐cathode capacity.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>C‐coated NASICON nanocrystals</subject><subject>Discharge capacity</subject><subject>Electrolytes</subject><subject>electrolyte‐electrode interface</subject><subject>full‐cathode capacity</subject><subject>High voltages</subject><subject>Molten salt electrolytes</subject><subject>Na11Sn2PS12</subject><subject>Resilience</subject><subject>Room temperature</subject><subject>Slurries</subject><subject>Sodium</subject><subject>Sodium channels (voltage-gated)</subject><subject>Sodium-ion batteries</subject><subject>Solid electrolytes</subject><subject>solid sodium‐ion battery</subject><subject>Stitching</subject><issn>2575-0356</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCpbai08Q8CZszcfuZnvUstpCRbB-HEM2mW1Tdjd1k1J78xF8Rp_ErfXgSQKTOfxmBv4InVMypISwK4CaDSmLhThCPZaIJCI8SY__9Kdo4P2KdJhQHtNRD6k5qLoC7_E82KCXtllgV-JHMO4dv9rGuK3HweG8UUUFeGIXy6-PzxdXBbWAjnlbWWgCnrvKmq4au6nx1DX4RoUArQV_hk5KVXkY_P599HybP40n0ezhbjq-nkWacyGijBCqSlJmpc6AGp4xlhCjtI5JWqRCxKIUDIwqYsFV94wuMqVHSUo145oWvI8uDnvXrXvbgA9y5TZt052UbETijHISk05dHpRunfctlHLd2lq1O0mJ3Kco9ynKnxQ7TA94ayvY_SNlnt-zw8w3Ez10mw</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Zhang, Xiangdan</creator><creator>Huang, Yuanyuan</creator><creator>Hu, Xiaoyi</creator><creator>Guo, Ruxin</creator><creator>Zhang, Yongshang</creator><creator>Wu, Zhiheng</creator><creator>Cao, Guoqin</creator><creator>Yu, Yuran</creator><creator>Wang, Zhuo</creator><creator>Shen, Yonglong</creator><creator>Shao, Guosheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1498-7929</orcidid><orcidid>https://orcid.org/0000-0003-4436-9689</orcidid><orcidid>https://orcid.org/0000-0001-6647-7600</orcidid><orcidid>https://orcid.org/0000-0002-4836-0545</orcidid><orcidid>https://orcid.org/0000-0002-0630-5425</orcidid></search><sort><creationdate>202311</creationdate><title>Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries</title><author>Zhang, Xiangdan ; Huang, Yuanyuan ; Hu, Xiaoyi ; Guo, Ruxin ; Zhang, Yongshang ; Wu, Zhiheng ; Cao, Guoqin ; Yu, Yuran ; Wang, Zhuo ; Shen, Yonglong ; Shao, Guosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>C‐coated NASICON nanocrystals</topic><topic>Discharge capacity</topic><topic>Electrolytes</topic><topic>electrolyte‐electrode interface</topic><topic>full‐cathode capacity</topic><topic>High voltages</topic><topic>Molten salt electrolytes</topic><topic>Na11Sn2PS12</topic><topic>Resilience</topic><topic>Room temperature</topic><topic>Slurries</topic><topic>Sodium</topic><topic>Sodium channels (voltage-gated)</topic><topic>Sodium-ion batteries</topic><topic>Solid electrolytes</topic><topic>solid sodium‐ion battery</topic><topic>Stitching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangdan</creatorcontrib><creatorcontrib>Huang, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Xiaoyi</creatorcontrib><creatorcontrib>Guo, Ruxin</creatorcontrib><creatorcontrib>Zhang, Yongshang</creatorcontrib><creatorcontrib>Wu, Zhiheng</creatorcontrib><creatorcontrib>Cao, Guoqin</creatorcontrib><creatorcontrib>Yu, Yuran</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Shen, Yonglong</creatorcontrib><creatorcontrib>Shao, Guosheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiangdan</au><au>Huang, Yuanyuan</au><au>Hu, Xiaoyi</au><au>Guo, Ruxin</au><au>Zhang, Yongshang</au><au>Wu, Zhiheng</au><au>Cao, Guoqin</au><au>Yu, Yuran</au><au>Wang, Zhuo</au><au>Shen, Yonglong</au><au>Shao, Guosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries</atitle><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>6</volume><issue>6</issue><epage>n/a</epage><issn>2575-0356</issn><eissn>2575-0356</eissn><abstract>While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective approach toward realizing solid sodium ion batteries, using the Na11Sn2PS12 electrolyte and slurry‐coated NASICON‐type Na3MnTi(PO4)3@C as high‐voltage cathode, highly beneficial for low processing cost and high content/loading of active cathode matter. We report that through significantly improved integrity of electrolyte‐cathode interface, such solid sodium ion batteries can deliver outstanding cycling and rate performance, with a charge voltage resilience up to 4.1 V, a high cathode discharge capacity of 128.7 mAh g−1 against the Na3MnTi(PO4)3@C in cathode is achieved at 0.05 C, and capacity retention ratio of 82% with a rate of 0.1 C is realized after prolonged cycling at room temperature. Besides, we demonstrate that such a solid sodium ion battery can even perform at a sub‐zero Celsius temperature of −10°C, when the conventional control cell using liquid electrolyte completely fail to function. This work is to offer a dependable avenue in engineering next generation of safe solid ion batteries based on highly sustainable and much cheaper material resources.
Seamless overlap of electrochemical windows at the cathode‐electrolyte interface to enable high‐voltage resilience of sulfide electrolyte for stable performance of solid sodium ion battery cells. The high ion and electric conductivity of in situ C‐coated Na3MnTi(PO4)3 nano‐composites is fundamental to utilizing desirable slurry‐coated cathode without inclusion of solid electrolyte, thus delivering highly enhanced full‐cathode capacity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12477</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1498-7929</orcidid><orcidid>https://orcid.org/0000-0003-4436-9689</orcidid><orcidid>https://orcid.org/0000-0001-6647-7600</orcidid><orcidid>https://orcid.org/0000-0002-4836-0545</orcidid><orcidid>https://orcid.org/0000-0002-0630-5425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2575-0356 |
ispartof | Energy & environmental materials (Hoboken, N.J.), 2023-11, Vol.6 (6), p.n/a |
issn | 2575-0356 2575-0356 |
language | eng |
recordid | cdi_proquest_journals_2904813040 |
source | Wiley Open Access |
subjects | Batteries Cathodes C‐coated NASICON nanocrystals Discharge capacity Electrolytes electrolyte‐electrode interface full‐cathode capacity High voltages Molten salt electrolytes Na11Sn2PS12 Resilience Room temperature Slurries Sodium Sodium channels (voltage-gated) Sodium-ion batteries Solid electrolytes solid sodium‐ion battery Stitching |
title | Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seamless%20Stitching%20of%20Redox%20Windows%20to%20Enable%20High%E2%80%90Voltage%20Resilient%20Solid%20Sodium%20Ion%20Batteries&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Zhang,%20Xiangdan&rft.date=2023-11&rft.volume=6&rft.issue=6&rft.epage=n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12477&rft_dat=%3Cproquest_24P%3E2904813040%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904813040&rft_id=info:pmid/&rfr_iscdi=true |