Loading…

Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries

While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-11, Vol.6 (6), p.n/a
Main Authors: Zhang, Xiangdan, Huang, Yuanyuan, Hu, Xiaoyi, Guo, Ruxin, Zhang, Yongshang, Wu, Zhiheng, Cao, Guoqin, Yu, Yuran, Wang, Zhuo, Shen, Yonglong, Shao, Guosheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3
cites cdi_FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3
container_end_page n/a
container_issue 6
container_start_page
container_title Energy & environmental materials (Hoboken, N.J.)
container_volume 6
creator Zhang, Xiangdan
Huang, Yuanyuan
Hu, Xiaoyi
Guo, Ruxin
Zhang, Yongshang
Wu, Zhiheng
Cao, Guoqin
Yu, Yuran
Wang, Zhuo
Shen, Yonglong
Shao, Guosheng
description While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective approach toward realizing solid sodium ion batteries, using the Na11Sn2PS12 electrolyte and slurry‐coated NASICON‐type Na3MnTi(PO4)3@C as high‐voltage cathode, highly beneficial for low processing cost and high content/loading of active cathode matter. We report that through significantly improved integrity of electrolyte‐cathode interface, such solid sodium ion batteries can deliver outstanding cycling and rate performance, with a charge voltage resilience up to 4.1 V, a high cathode discharge capacity of 128.7 mAh g−1 against the Na3MnTi(PO4)3@C in cathode is achieved at 0.05 C, and capacity retention ratio of 82% with a rate of 0.1 C is realized after prolonged cycling at room temperature. Besides, we demonstrate that such a solid sodium ion battery can even perform at a sub‐zero Celsius temperature of −10°C, when the conventional control cell using liquid electrolyte completely fail to function. This work is to offer a dependable avenue in engineering next generation of safe solid ion batteries based on highly sustainable and much cheaper material resources. Seamless overlap of electrochemical windows at the cathode‐electrolyte interface to enable high‐voltage resilience of sulfide electrolyte for stable performance of solid sodium ion battery cells. The high ion and electric conductivity of in situ C‐coated Na3MnTi(PO4)3 nano‐composites is fundamental to utilizing desirable slurry‐coated cathode without inclusion of solid electrolyte, thus delivering highly enhanced full‐cathode capacity.
doi_str_mv 10.1002/eem2.12477
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2904813040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904813040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCpbai08Q8CZszcfuZnvUstpCRbB-HEM2mW1Tdjd1k1J78xF8Rp_ErfXgSQKTOfxmBv4InVMypISwK4CaDSmLhThCPZaIJCI8SY__9Kdo4P2KdJhQHtNRD6k5qLoC7_E82KCXtllgV-JHMO4dv9rGuK3HweG8UUUFeGIXy6-PzxdXBbWAjnlbWWgCnrvKmq4au6nx1DX4RoUArQV_hk5KVXkY_P599HybP40n0ezhbjq-nkWacyGijBCqSlJmpc6AGp4xlhCjtI5JWqRCxKIUDIwqYsFV94wuMqVHSUo145oWvI8uDnvXrXvbgA9y5TZt052UbETijHISk05dHpRunfctlHLd2lq1O0mJ3Kco9ynKnxQ7TA94ayvY_SNlnt-zw8w3Ez10mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904813040</pqid></control><display><type>article</type><title>Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries</title><source>Wiley Open Access</source><creator>Zhang, Xiangdan ; Huang, Yuanyuan ; Hu, Xiaoyi ; Guo, Ruxin ; Zhang, Yongshang ; Wu, Zhiheng ; Cao, Guoqin ; Yu, Yuran ; Wang, Zhuo ; Shen, Yonglong ; Shao, Guosheng</creator><creatorcontrib>Zhang, Xiangdan ; Huang, Yuanyuan ; Hu, Xiaoyi ; Guo, Ruxin ; Zhang, Yongshang ; Wu, Zhiheng ; Cao, Guoqin ; Yu, Yuran ; Wang, Zhuo ; Shen, Yonglong ; Shao, Guosheng</creatorcontrib><description>While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective approach toward realizing solid sodium ion batteries, using the Na11Sn2PS12 electrolyte and slurry‐coated NASICON‐type Na3MnTi(PO4)3@C as high‐voltage cathode, highly beneficial for low processing cost and high content/loading of active cathode matter. We report that through significantly improved integrity of electrolyte‐cathode interface, such solid sodium ion batteries can deliver outstanding cycling and rate performance, with a charge voltage resilience up to 4.1 V, a high cathode discharge capacity of 128.7 mAh g−1 against the Na3MnTi(PO4)3@C in cathode is achieved at 0.05 C, and capacity retention ratio of 82% with a rate of 0.1 C is realized after prolonged cycling at room temperature. Besides, we demonstrate that such a solid sodium ion battery can even perform at a sub‐zero Celsius temperature of −10°C, when the conventional control cell using liquid electrolyte completely fail to function. This work is to offer a dependable avenue in engineering next generation of safe solid ion batteries based on highly sustainable and much cheaper material resources. Seamless overlap of electrochemical windows at the cathode‐electrolyte interface to enable high‐voltage resilience of sulfide electrolyte for stable performance of solid sodium ion battery cells. The high ion and electric conductivity of in situ C‐coated Na3MnTi(PO4)3 nano‐composites is fundamental to utilizing desirable slurry‐coated cathode without inclusion of solid electrolyte, thus delivering highly enhanced full‐cathode capacity.</description><identifier>ISSN: 2575-0356</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12477</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Cathodes ; C‐coated NASICON nanocrystals ; Discharge capacity ; Electrolytes ; electrolyte‐electrode interface ; full‐cathode capacity ; High voltages ; Molten salt electrolytes ; Na11Sn2PS12 ; Resilience ; Room temperature ; Slurries ; Sodium ; Sodium channels (voltage-gated) ; Sodium-ion batteries ; Solid electrolytes ; solid sodium‐ion battery ; Stitching</subject><ispartof>Energy &amp; environmental materials (Hoboken, N.J.), 2023-11, Vol.6 (6), p.n/a</ispartof><rights>2022 Zhengzhou University.</rights><rights>2023 Zhengzhou University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3</citedby><cites>FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3</cites><orcidid>0000-0003-1498-7929 ; 0000-0003-4436-9689 ; 0000-0001-6647-7600 ; 0000-0002-4836-0545 ; 0000-0002-0630-5425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12477$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12477$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12477$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Zhang, Xiangdan</creatorcontrib><creatorcontrib>Huang, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Xiaoyi</creatorcontrib><creatorcontrib>Guo, Ruxin</creatorcontrib><creatorcontrib>Zhang, Yongshang</creatorcontrib><creatorcontrib>Wu, Zhiheng</creatorcontrib><creatorcontrib>Cao, Guoqin</creatorcontrib><creatorcontrib>Yu, Yuran</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Shen, Yonglong</creatorcontrib><creatorcontrib>Shao, Guosheng</creatorcontrib><title>Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries</title><title>Energy &amp; environmental materials (Hoboken, N.J.)</title><description>While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective approach toward realizing solid sodium ion batteries, using the Na11Sn2PS12 electrolyte and slurry‐coated NASICON‐type Na3MnTi(PO4)3@C as high‐voltage cathode, highly beneficial for low processing cost and high content/loading of active cathode matter. We report that through significantly improved integrity of electrolyte‐cathode interface, such solid sodium ion batteries can deliver outstanding cycling and rate performance, with a charge voltage resilience up to 4.1 V, a high cathode discharge capacity of 128.7 mAh g−1 against the Na3MnTi(PO4)3@C in cathode is achieved at 0.05 C, and capacity retention ratio of 82% with a rate of 0.1 C is realized after prolonged cycling at room temperature. Besides, we demonstrate that such a solid sodium ion battery can even perform at a sub‐zero Celsius temperature of −10°C, when the conventional control cell using liquid electrolyte completely fail to function. This work is to offer a dependable avenue in engineering next generation of safe solid ion batteries based on highly sustainable and much cheaper material resources. Seamless overlap of electrochemical windows at the cathode‐electrolyte interface to enable high‐voltage resilience of sulfide electrolyte for stable performance of solid sodium ion battery cells. The high ion and electric conductivity of in situ C‐coated Na3MnTi(PO4)3 nano‐composites is fundamental to utilizing desirable slurry‐coated cathode without inclusion of solid electrolyte, thus delivering highly enhanced full‐cathode capacity.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>C‐coated NASICON nanocrystals</subject><subject>Discharge capacity</subject><subject>Electrolytes</subject><subject>electrolyte‐electrode interface</subject><subject>full‐cathode capacity</subject><subject>High voltages</subject><subject>Molten salt electrolytes</subject><subject>Na11Sn2PS12</subject><subject>Resilience</subject><subject>Room temperature</subject><subject>Slurries</subject><subject>Sodium</subject><subject>Sodium channels (voltage-gated)</subject><subject>Sodium-ion batteries</subject><subject>Solid electrolytes</subject><subject>solid sodium‐ion battery</subject><subject>Stitching</subject><issn>2575-0356</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCpbai08Q8CZszcfuZnvUstpCRbB-HEM2mW1Tdjd1k1J78xF8Rp_ErfXgSQKTOfxmBv4InVMypISwK4CaDSmLhThCPZaIJCI8SY__9Kdo4P2KdJhQHtNRD6k5qLoC7_E82KCXtllgV-JHMO4dv9rGuK3HweG8UUUFeGIXy6-PzxdXBbWAjnlbWWgCnrvKmq4au6nx1DX4RoUArQV_hk5KVXkY_P599HybP40n0ezhbjq-nkWacyGijBCqSlJmpc6AGp4xlhCjtI5JWqRCxKIUDIwqYsFV94wuMqVHSUo145oWvI8uDnvXrXvbgA9y5TZt052UbETijHISk05dHpRunfctlHLd2lq1O0mJ3Kco9ynKnxQ7TA94ayvY_SNlnt-zw8w3Ez10mw</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Zhang, Xiangdan</creator><creator>Huang, Yuanyuan</creator><creator>Hu, Xiaoyi</creator><creator>Guo, Ruxin</creator><creator>Zhang, Yongshang</creator><creator>Wu, Zhiheng</creator><creator>Cao, Guoqin</creator><creator>Yu, Yuran</creator><creator>Wang, Zhuo</creator><creator>Shen, Yonglong</creator><creator>Shao, Guosheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1498-7929</orcidid><orcidid>https://orcid.org/0000-0003-4436-9689</orcidid><orcidid>https://orcid.org/0000-0001-6647-7600</orcidid><orcidid>https://orcid.org/0000-0002-4836-0545</orcidid><orcidid>https://orcid.org/0000-0002-0630-5425</orcidid></search><sort><creationdate>202311</creationdate><title>Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries</title><author>Zhang, Xiangdan ; Huang, Yuanyuan ; Hu, Xiaoyi ; Guo, Ruxin ; Zhang, Yongshang ; Wu, Zhiheng ; Cao, Guoqin ; Yu, Yuran ; Wang, Zhuo ; Shen, Yonglong ; Shao, Guosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>C‐coated NASICON nanocrystals</topic><topic>Discharge capacity</topic><topic>Electrolytes</topic><topic>electrolyte‐electrode interface</topic><topic>full‐cathode capacity</topic><topic>High voltages</topic><topic>Molten salt electrolytes</topic><topic>Na11Sn2PS12</topic><topic>Resilience</topic><topic>Room temperature</topic><topic>Slurries</topic><topic>Sodium</topic><topic>Sodium channels (voltage-gated)</topic><topic>Sodium-ion batteries</topic><topic>Solid electrolytes</topic><topic>solid sodium‐ion battery</topic><topic>Stitching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangdan</creatorcontrib><creatorcontrib>Huang, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Xiaoyi</creatorcontrib><creatorcontrib>Guo, Ruxin</creatorcontrib><creatorcontrib>Zhang, Yongshang</creatorcontrib><creatorcontrib>Wu, Zhiheng</creatorcontrib><creatorcontrib>Cao, Guoqin</creatorcontrib><creatorcontrib>Yu, Yuran</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Shen, Yonglong</creatorcontrib><creatorcontrib>Shao, Guosheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiangdan</au><au>Huang, Yuanyuan</au><au>Hu, Xiaoyi</au><au>Guo, Ruxin</au><au>Zhang, Yongshang</au><au>Wu, Zhiheng</au><au>Cao, Guoqin</au><au>Yu, Yuran</au><au>Wang, Zhuo</au><au>Shen, Yonglong</au><au>Shao, Guosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries</atitle><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>6</volume><issue>6</issue><epage>n/a</epage><issn>2575-0356</issn><eissn>2575-0356</eissn><abstract>While sulfide solid electrolytes such as Na11Sn2PS12 can allow fast transport of Na+ ions, their utilization in solid sodium ion batteries is rather unsuccessful since they are not electrochemically compatible to both high‐voltage cathodes and sodium metal anode. In this work, we devise an effective approach toward realizing solid sodium ion batteries, using the Na11Sn2PS12 electrolyte and slurry‐coated NASICON‐type Na3MnTi(PO4)3@C as high‐voltage cathode, highly beneficial for low processing cost and high content/loading of active cathode matter. We report that through significantly improved integrity of electrolyte‐cathode interface, such solid sodium ion batteries can deliver outstanding cycling and rate performance, with a charge voltage resilience up to 4.1 V, a high cathode discharge capacity of 128.7 mAh g−1 against the Na3MnTi(PO4)3@C in cathode is achieved at 0.05 C, and capacity retention ratio of 82% with a rate of 0.1 C is realized after prolonged cycling at room temperature. Besides, we demonstrate that such a solid sodium ion battery can even perform at a sub‐zero Celsius temperature of −10°C, when the conventional control cell using liquid electrolyte completely fail to function. This work is to offer a dependable avenue in engineering next generation of safe solid ion batteries based on highly sustainable and much cheaper material resources. Seamless overlap of electrochemical windows at the cathode‐electrolyte interface to enable high‐voltage resilience of sulfide electrolyte for stable performance of solid sodium ion battery cells. The high ion and electric conductivity of in situ C‐coated Na3MnTi(PO4)3 nano‐composites is fundamental to utilizing desirable slurry‐coated cathode without inclusion of solid electrolyte, thus delivering highly enhanced full‐cathode capacity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12477</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1498-7929</orcidid><orcidid>https://orcid.org/0000-0003-4436-9689</orcidid><orcidid>https://orcid.org/0000-0001-6647-7600</orcidid><orcidid>https://orcid.org/0000-0002-4836-0545</orcidid><orcidid>https://orcid.org/0000-0002-0630-5425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2575-0356
ispartof Energy & environmental materials (Hoboken, N.J.), 2023-11, Vol.6 (6), p.n/a
issn 2575-0356
2575-0356
language eng
recordid cdi_proquest_journals_2904813040
source Wiley Open Access
subjects Batteries
Cathodes
C‐coated NASICON nanocrystals
Discharge capacity
Electrolytes
electrolyte‐electrode interface
full‐cathode capacity
High voltages
Molten salt electrolytes
Na11Sn2PS12
Resilience
Room temperature
Slurries
Sodium
Sodium channels (voltage-gated)
Sodium-ion batteries
Solid electrolytes
solid sodium‐ion battery
Stitching
title Seamless Stitching of Redox Windows to Enable High‐Voltage Resilient Solid Sodium Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seamless%20Stitching%20of%20Redox%20Windows%20to%20Enable%20High%E2%80%90Voltage%20Resilient%20Solid%20Sodium%20Ion%20Batteries&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Zhang,%20Xiangdan&rft.date=2023-11&rft.volume=6&rft.issue=6&rft.epage=n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12477&rft_dat=%3Cproquest_24P%3E2904813040%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3377-8001af0f8fc8e1d382250dacc406b67747f72edab473a3a3dcb8ac9561c23c1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904813040&rft_id=info:pmid/&rfr_iscdi=true