Loading…

One dimensional radiative nanofluid flow with heat generative Al2 O3-H2O and Cu-H2O nanoparticles reactions chemically

The Non-Newtonian One dimensional Nanofluid with Aluminium-water based and Copper-water based nanoparticles to a nonlinear plate which is considered vertically. The analysis of nanofluid in order to incorporate the impact of radiation, generating energy flow rate and higher order reactions on nanosc...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramesh, Kune, Jagadha, S., Gopal, D., Naik, S. Hari Sing, Kishan, N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2943
creator Ramesh, Kune
Jagadha, S.
Gopal, D.
Naik, S. Hari Sing
Kishan, N.
description The Non-Newtonian One dimensional Nanofluid with Aluminium-water based and Copper-water based nanoparticles to a nonlinear plate which is considered vertically. The analysis of nanofluid in order to incorporate the impact of radiation, generating energy flow rate and higher order reactions on nanoscale materials chemically are performed. The novelty of the problem is the thermal energy of copper and aluminium water based nanoparticles are tested and outputs are executed comparing them. The fundamental inner flow region of governing equations are framed to nonlinear coupled partial differential equations via similarity variable transformations. The finite element technique (FEM) is employed due to its stability and convergent, outputs are computed using MATLAB code. The impact of physical significance reflective pertinent quantifiers such as heat generation quantifier, radiation, magnetic field quantifier, Prandtl, Schmidt and chemical reaction quantifier are illustrated. Comparison of Aluminium-water based and Copper-water based nanoparticles in velocity field, temperature gradient and species gradient are graphically illustrated. To examine the impacts of principal flow of heat transfer (Nusselt) and skin friction values are tabulated.
doi_str_mv 10.1063/5.0190329
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2906022910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906022910</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1689-580ba485fb5434892d13226d9471979b33ea11da8b330158b276bbc74ea589523</originalsourceid><addsrcrecordid>eNotkE9Lw0AUxBdRsFYPfoMFb0Lq_k12j6WoFQq5KHhbXpKN3bJN4m7S0m9vYnuaOfze8GYQeqRkQUnKX-SCUE0401doRqWkSZbS9BrNCNEiYYJ_36K7GHeEMJ1laoYOeWNx5fa2ia5twOMAlYPeHSxuoGlrP7gK17494qPrt3hrocc_trHhzCw9wzlP1izH0FR4Nfzb6bKD0LvS24iDhbIfwyMut3bvSvD-dI9uavDRPlx0jr7eXj9X62STv3-slpuko6nSiVSkAKFkXUjBhdKsopyxtNIiozrTBecWKK1AjY5QqQqWpUVRZsKCVFoyPkdP59wutL-Djb3ZtUMYe0bDNEkJY5qSkXo-U7F0PUy_mi64PYSTocRMuxppLrvyPwXHaMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2906022910</pqid></control><display><type>conference_proceeding</type><title>One dimensional radiative nanofluid flow with heat generative Al2 O3-H2O and Cu-H2O nanoparticles reactions chemically</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ramesh, Kune ; Jagadha, S. ; Gopal, D. ; Naik, S. Hari Sing ; Kishan, N.</creator><contributor>Reddy, P. Uma Maheshwera ; Gupta, Manoj ; Reddy, N. S.</contributor><creatorcontrib>Ramesh, Kune ; Jagadha, S. ; Gopal, D. ; Naik, S. Hari Sing ; Kishan, N. ; Reddy, P. Uma Maheshwera ; Gupta, Manoj ; Reddy, N. S.</creatorcontrib><description>The Non-Newtonian One dimensional Nanofluid with Aluminium-water based and Copper-water based nanoparticles to a nonlinear plate which is considered vertically. The analysis of nanofluid in order to incorporate the impact of radiation, generating energy flow rate and higher order reactions on nanoscale materials chemically are performed. The novelty of the problem is the thermal energy of copper and aluminium water based nanoparticles are tested and outputs are executed comparing them. The fundamental inner flow region of governing equations are framed to nonlinear coupled partial differential equations via similarity variable transformations. The finite element technique (FEM) is employed due to its stability and convergent, outputs are computed using MATLAB code. The impact of physical significance reflective pertinent quantifiers such as heat generation quantifier, radiation, magnetic field quantifier, Prandtl, Schmidt and chemical reaction quantifier are illustrated. Comparison of Aluminium-water based and Copper-water based nanoparticles in velocity field, temperature gradient and species gradient are graphically illustrated. To examine the impacts of principal flow of heat transfer (Nusselt) and skin friction values are tabulated.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0190329</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Chemical reactions ; Copper ; Energy flow ; Finite element method ; Fluid flow ; Heat generation ; Mathematical analysis ; Nanofluids ; Nanoparticles ; Partial differential equations ; Radiation ; Skin friction ; Thermal energy ; Velocity distribution</subject><ispartof>AIP conference proceedings, 2023, Vol.2943 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Reddy, P. Uma Maheshwera</contributor><contributor>Gupta, Manoj</contributor><contributor>Reddy, N. S.</contributor><creatorcontrib>Ramesh, Kune</creatorcontrib><creatorcontrib>Jagadha, S.</creatorcontrib><creatorcontrib>Gopal, D.</creatorcontrib><creatorcontrib>Naik, S. Hari Sing</creatorcontrib><creatorcontrib>Kishan, N.</creatorcontrib><title>One dimensional radiative nanofluid flow with heat generative Al2 O3-H2O and Cu-H2O nanoparticles reactions chemically</title><title>AIP conference proceedings</title><description>The Non-Newtonian One dimensional Nanofluid with Aluminium-water based and Copper-water based nanoparticles to a nonlinear plate which is considered vertically. The analysis of nanofluid in order to incorporate the impact of radiation, generating energy flow rate and higher order reactions on nanoscale materials chemically are performed. The novelty of the problem is the thermal energy of copper and aluminium water based nanoparticles are tested and outputs are executed comparing them. The fundamental inner flow region of governing equations are framed to nonlinear coupled partial differential equations via similarity variable transformations. The finite element technique (FEM) is employed due to its stability and convergent, outputs are computed using MATLAB code. The impact of physical significance reflective pertinent quantifiers such as heat generation quantifier, radiation, magnetic field quantifier, Prandtl, Schmidt and chemical reaction quantifier are illustrated. Comparison of Aluminium-water based and Copper-water based nanoparticles in velocity field, temperature gradient and species gradient are graphically illustrated. To examine the impacts of principal flow of heat transfer (Nusselt) and skin friction values are tabulated.</description><subject>Aluminum oxide</subject><subject>Chemical reactions</subject><subject>Copper</subject><subject>Energy flow</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Heat generation</subject><subject>Mathematical analysis</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Partial differential equations</subject><subject>Radiation</subject><subject>Skin friction</subject><subject>Thermal energy</subject><subject>Velocity distribution</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9Lw0AUxBdRsFYPfoMFb0Lq_k12j6WoFQq5KHhbXpKN3bJN4m7S0m9vYnuaOfze8GYQeqRkQUnKX-SCUE0401doRqWkSZbS9BrNCNEiYYJ_36K7GHeEMJ1laoYOeWNx5fa2ia5twOMAlYPeHSxuoGlrP7gK17494qPrt3hrocc_trHhzCw9wzlP1izH0FR4Nfzb6bKD0LvS24iDhbIfwyMut3bvSvD-dI9uavDRPlx0jr7eXj9X62STv3-slpuko6nSiVSkAKFkXUjBhdKsopyxtNIiozrTBecWKK1AjY5QqQqWpUVRZsKCVFoyPkdP59wutL-Djb3ZtUMYe0bDNEkJY5qSkXo-U7F0PUy_mi64PYSTocRMuxppLrvyPwXHaMY</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Ramesh, Kune</creator><creator>Jagadha, S.</creator><creator>Gopal, D.</creator><creator>Naik, S. Hari Sing</creator><creator>Kishan, N.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231226</creationdate><title>One dimensional radiative nanofluid flow with heat generative Al2 O3-H2O and Cu-H2O nanoparticles reactions chemically</title><author>Ramesh, Kune ; Jagadha, S. ; Gopal, D. ; Naik, S. Hari Sing ; Kishan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1689-580ba485fb5434892d13226d9471979b33ea11da8b330158b276bbc74ea589523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Chemical reactions</topic><topic>Copper</topic><topic>Energy flow</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Heat generation</topic><topic>Mathematical analysis</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Partial differential equations</topic><topic>Radiation</topic><topic>Skin friction</topic><topic>Thermal energy</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramesh, Kune</creatorcontrib><creatorcontrib>Jagadha, S.</creatorcontrib><creatorcontrib>Gopal, D.</creatorcontrib><creatorcontrib>Naik, S. Hari Sing</creatorcontrib><creatorcontrib>Kishan, N.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramesh, Kune</au><au>Jagadha, S.</au><au>Gopal, D.</au><au>Naik, S. Hari Sing</au><au>Kishan, N.</au><au>Reddy, P. Uma Maheshwera</au><au>Gupta, Manoj</au><au>Reddy, N. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>One dimensional radiative nanofluid flow with heat generative Al2 O3-H2O and Cu-H2O nanoparticles reactions chemically</atitle><btitle>AIP conference proceedings</btitle><date>2023-12-26</date><risdate>2023</risdate><volume>2943</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The Non-Newtonian One dimensional Nanofluid with Aluminium-water based and Copper-water based nanoparticles to a nonlinear plate which is considered vertically. The analysis of nanofluid in order to incorporate the impact of radiation, generating energy flow rate and higher order reactions on nanoscale materials chemically are performed. The novelty of the problem is the thermal energy of copper and aluminium water based nanoparticles are tested and outputs are executed comparing them. The fundamental inner flow region of governing equations are framed to nonlinear coupled partial differential equations via similarity variable transformations. The finite element technique (FEM) is employed due to its stability and convergent, outputs are computed using MATLAB code. The impact of physical significance reflective pertinent quantifiers such as heat generation quantifier, radiation, magnetic field quantifier, Prandtl, Schmidt and chemical reaction quantifier are illustrated. Comparison of Aluminium-water based and Copper-water based nanoparticles in velocity field, temperature gradient and species gradient are graphically illustrated. To examine the impacts of principal flow of heat transfer (Nusselt) and skin friction values are tabulated.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0190329</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2943 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2906022910
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Aluminum oxide
Chemical reactions
Copper
Energy flow
Finite element method
Fluid flow
Heat generation
Mathematical analysis
Nanofluids
Nanoparticles
Partial differential equations
Radiation
Skin friction
Thermal energy
Velocity distribution
title One dimensional radiative nanofluid flow with heat generative Al2 O3-H2O and Cu-H2O nanoparticles reactions chemically
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=One%20dimensional%20radiative%20nanofluid%20flow%20with%20heat%20generative%20Al2%20O3-H2O%20and%20Cu-H2O%20nanoparticles%20reactions%20chemically&rft.btitle=AIP%20conference%20proceedings&rft.au=Ramesh,%20Kune&rft.date=2023-12-26&rft.volume=2943&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0190329&rft_dat=%3Cproquest_scita%3E2906022910%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1689-580ba485fb5434892d13226d9471979b33ea11da8b330158b276bbc74ea589523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2906022910&rft_id=info:pmid/&rfr_iscdi=true