Loading…
Effect of the Addition of Sawdust on Clay Brick Construction Properties and Thermal Insulation: Experimental and Simulation Approaches
The construction industry plays a significant role in shaping our environment and economy. However, it also substantially impacts the environment, including the depletion of natural resources, increased energy consumption, and waste generation. The green building trend has recently gained significan...
Saved in:
Published in: | Journal of architectural engineering 2024-03, Vol.30 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The construction industry plays a significant role in shaping our environment and economy. However, it also substantially impacts the environment, including the depletion of natural resources, increased energy consumption, and waste generation. The green building trend has recently gained significant attention in recent years to mitigate the negative impacts of the building industry, focusing on sustainable materials and practices. One of the primary materials used in this field is clay brick, which leads to soil depletion over time. In this context, this study explores the potential of sawdust waste as a partial replacement for clay in brick production, aiming to reduce the depletion of natural resources while enhancing the properties and performance of the produced bricks. The study consists of two main phases: experimental and simulation. In the experimental phase, clay brick samples were produced by adding sawdust at different ratios (1%, 2%, 4%, 8%, and 10% of the raw weight), and various physical and mechanical properties of the produced samples were tested to ensure their suitability for construction use. Also, the thermal properties of the proposed brick were measured to investigate the effect of sawdust addition on brick thermal insulation. Consequently, thermal conductivity and specific heat were measured. In the simulation phase, DesignBuilder software (version 7.0.2) was used to investigate the impact of the proposed material on building envelope’s performance and heat gain reduction. All experimental and simulation results were compared with the traditional clay brick measurements, which reveal a significant improvement in brick properties and performance with an increase in comprehensive strength of up to 192.3% and a reduction in energy consumption reaching 11.27%. The study results showed significant improvement in the properties and performance of the produced bricks, indicating the potential of using sawdust waste as a sustainable material for green buildings. |
---|---|
ISSN: | 1076-0431 1943-5568 |
DOI: | 10.1061/JAEIED.AEENG-1676 |