Loading…
YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction
The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are def...
Saved in:
Published in: | arXiv.org 2024-04 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xiao, Xinglin Wang, Yijie Xu, Nan Wang, Yuqi Yang, Hanxuan Wang, Minzheng Luo, Yin Wang, Lei Mao, Wenji Zeng, Daniel |
description | The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2906660330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906660330</sourcerecordid><originalsourceid>FETCH-proquest_journals_29066603303</originalsourceid><addsrcrecordid>eNqNy90KgjAABeARBEn5DoOuB2vL9XMnMsl7vYguZNhMTbfaT_X4ifQAXR0O5zszEBBKN2i_JWQBQms7jDFhOxJFNACXc3zOUJHxI4xh0giHuGqEquQVZso64yvXagVzr1p1g6kRg3xrc4e1NrBQ7UsaK_qRjn0QE-UfZ8T0WoF5LXorw18uwTrleXJCD6OfXlpXdtobNU4lOWDGGKYU0__UF8IpQjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906660330</pqid></control><display><type>article</type><title>YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction</title><source>Publicly Available Content Database</source><creator>Xiao, Xinglin ; Wang, Yijie ; Xu, Nan ; Wang, Yuqi ; Yang, Hanxuan ; Wang, Minzheng ; Luo, Yin ; Wang, Lei ; Mao, Wenji ; Zeng, Daniel</creator><creatorcontrib>Xiao, Xinglin ; Wang, Yijie ; Xu, Nan ; Wang, Yuqi ; Yang, Hanxuan ; Wang, Minzheng ; Luo, Yin ; Wang, Lei ; Mao, Wenji ; Zeng, Daniel</creatorcontrib><description>The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data structures ; Datasets ; English language ; Information retrieval ; Large language models ; Non-English languages ; Tuning</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2906660330?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xiao, Xinglin</creatorcontrib><creatorcontrib>Wang, Yijie</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Wang, Yuqi</creatorcontrib><creatorcontrib>Yang, Hanxuan</creatorcontrib><creatorcontrib>Wang, Minzheng</creatorcontrib><creatorcontrib>Luo, Yin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Mao, Wenji</creatorcontrib><creatorcontrib>Zeng, Daniel</creatorcontrib><title>YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction</title><title>arXiv.org</title><description>The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings.</description><subject>Data structures</subject><subject>Datasets</subject><subject>English language</subject><subject>Information retrieval</subject><subject>Large language models</subject><subject>Non-English languages</subject><subject>Tuning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy90KgjAABeARBEn5DoOuB2vL9XMnMsl7vYguZNhMTbfaT_X4ifQAXR0O5zszEBBKN2i_JWQBQms7jDFhOxJFNACXc3zOUJHxI4xh0giHuGqEquQVZso64yvXagVzr1p1g6kRg3xrc4e1NrBQ7UsaK_qRjn0QE-UfZ8T0WoF5LXorw18uwTrleXJCD6OfXlpXdtobNU4lOWDGGKYU0__UF8IpQjw</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Xiao, Xinglin</creator><creator>Wang, Yijie</creator><creator>Xu, Nan</creator><creator>Wang, Yuqi</creator><creator>Yang, Hanxuan</creator><creator>Wang, Minzheng</creator><creator>Luo, Yin</creator><creator>Wang, Lei</creator><creator>Mao, Wenji</creator><creator>Zeng, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240402</creationdate><title>YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction</title><author>Xiao, Xinglin ; Wang, Yijie ; Xu, Nan ; Wang, Yuqi ; Yang, Hanxuan ; Wang, Minzheng ; Luo, Yin ; Wang, Lei ; Mao, Wenji ; Zeng, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29066603303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data structures</topic><topic>Datasets</topic><topic>English language</topic><topic>Information retrieval</topic><topic>Large language models</topic><topic>Non-English languages</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Xinglin</creatorcontrib><creatorcontrib>Wang, Yijie</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Wang, Yuqi</creatorcontrib><creatorcontrib>Yang, Hanxuan</creatorcontrib><creatorcontrib>Wang, Minzheng</creatorcontrib><creatorcontrib>Luo, Yin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Mao, Wenji</creatorcontrib><creatorcontrib>Zeng, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Xinglin</au><au>Wang, Yijie</au><au>Xu, Nan</au><au>Wang, Yuqi</au><au>Yang, Hanxuan</au><au>Wang, Minzheng</au><au>Luo, Yin</au><au>Wang, Lei</au><au>Mao, Wenji</au><au>Zeng, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction</atitle><jtitle>arXiv.org</jtitle><date>2024-04-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2906660330 |
source | Publicly Available Content Database |
subjects | Data structures Datasets English language Information retrieval Large language models Non-English languages Tuning |
title | YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=YAYI-UIE:%20A%20Chat-Enhanced%20Instruction%20Tuning%20Framework%20for%20Universal%20Information%20Extraction&rft.jtitle=arXiv.org&rft.au=Xiao,%20Xinglin&rft.date=2024-04-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2906660330%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29066603303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2906660330&rft_id=info:pmid/&rfr_iscdi=true |