Loading…

YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction

The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are def...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-04
Main Authors: Xiao, Xinglin, Wang, Yijie, Xu, Nan, Wang, Yuqi, Yang, Hanxuan, Wang, Minzheng, Luo, Yin, Wang, Lei, Mao, Wenji, Zeng, Daniel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xiao, Xinglin
Wang, Yijie
Xu, Nan
Wang, Yuqi
Yang, Hanxuan
Wang, Minzheng
Luo, Yin
Wang, Lei
Mao, Wenji
Zeng, Daniel
description The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2906660330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906660330</sourcerecordid><originalsourceid>FETCH-proquest_journals_29066603303</originalsourceid><addsrcrecordid>eNqNy90KgjAABeARBEn5DoOuB2vL9XMnMsl7vYguZNhMTbfaT_X4ifQAXR0O5zszEBBKN2i_JWQBQms7jDFhOxJFNACXc3zOUJHxI4xh0giHuGqEquQVZso64yvXagVzr1p1g6kRg3xrc4e1NrBQ7UsaK_qRjn0QE-UfZ8T0WoF5LXorw18uwTrleXJCD6OfXlpXdtobNU4lOWDGGKYU0__UF8IpQjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906660330</pqid></control><display><type>article</type><title>YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction</title><source>Publicly Available Content Database</source><creator>Xiao, Xinglin ; Wang, Yijie ; Xu, Nan ; Wang, Yuqi ; Yang, Hanxuan ; Wang, Minzheng ; Luo, Yin ; Wang, Lei ; Mao, Wenji ; Zeng, Daniel</creator><creatorcontrib>Xiao, Xinglin ; Wang, Yijie ; Xu, Nan ; Wang, Yuqi ; Yang, Hanxuan ; Wang, Minzheng ; Luo, Yin ; Wang, Lei ; Mao, Wenji ; Zeng, Daniel</creatorcontrib><description>The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data structures ; Datasets ; English language ; Information retrieval ; Large language models ; Non-English languages ; Tuning</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2906660330?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xiao, Xinglin</creatorcontrib><creatorcontrib>Wang, Yijie</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Wang, Yuqi</creatorcontrib><creatorcontrib>Yang, Hanxuan</creatorcontrib><creatorcontrib>Wang, Minzheng</creatorcontrib><creatorcontrib>Luo, Yin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Mao, Wenji</creatorcontrib><creatorcontrib>Zeng, Daniel</creatorcontrib><title>YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction</title><title>arXiv.org</title><description>The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings.</description><subject>Data structures</subject><subject>Datasets</subject><subject>English language</subject><subject>Information retrieval</subject><subject>Large language models</subject><subject>Non-English languages</subject><subject>Tuning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy90KgjAABeARBEn5DoOuB2vL9XMnMsl7vYguZNhMTbfaT_X4ifQAXR0O5zszEBBKN2i_JWQBQms7jDFhOxJFNACXc3zOUJHxI4xh0giHuGqEquQVZso64yvXagVzr1p1g6kRg3xrc4e1NrBQ7UsaK_qRjn0QE-UfZ8T0WoF5LXorw18uwTrleXJCD6OfXlpXdtobNU4lOWDGGKYU0__UF8IpQjw</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Xiao, Xinglin</creator><creator>Wang, Yijie</creator><creator>Xu, Nan</creator><creator>Wang, Yuqi</creator><creator>Yang, Hanxuan</creator><creator>Wang, Minzheng</creator><creator>Luo, Yin</creator><creator>Wang, Lei</creator><creator>Mao, Wenji</creator><creator>Zeng, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240402</creationdate><title>YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction</title><author>Xiao, Xinglin ; Wang, Yijie ; Xu, Nan ; Wang, Yuqi ; Yang, Hanxuan ; Wang, Minzheng ; Luo, Yin ; Wang, Lei ; Mao, Wenji ; Zeng, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29066603303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data structures</topic><topic>Datasets</topic><topic>English language</topic><topic>Information retrieval</topic><topic>Large language models</topic><topic>Non-English languages</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Xinglin</creatorcontrib><creatorcontrib>Wang, Yijie</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Wang, Yuqi</creatorcontrib><creatorcontrib>Yang, Hanxuan</creatorcontrib><creatorcontrib>Wang, Minzheng</creatorcontrib><creatorcontrib>Luo, Yin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Mao, Wenji</creatorcontrib><creatorcontrib>Zeng, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Xinglin</au><au>Wang, Yijie</au><au>Xu, Nan</au><au>Wang, Yuqi</au><au>Yang, Hanxuan</au><au>Wang, Minzheng</au><au>Luo, Yin</au><au>Wang, Lei</au><au>Mao, Wenji</au><au>Zeng, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction</atitle><jtitle>arXiv.org</jtitle><date>2024-04-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2906660330
source Publicly Available Content Database
subjects Data structures
Datasets
English language
Information retrieval
Large language models
Non-English languages
Tuning
title YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=YAYI-UIE:%20A%20Chat-Enhanced%20Instruction%20Tuning%20Framework%20for%20Universal%20Information%20Extraction&rft.jtitle=arXiv.org&rft.au=Xiao,%20Xinglin&rft.date=2024-04-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2906660330%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29066603303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2906660330&rft_id=info:pmid/&rfr_iscdi=true