Loading…
GNSS-retrieved precipitable water vapour in the Atlantic coast of France and Spain with GPT3 model
Water vapour is a critical atmospheric parameter to understand the Earth's climate system and it is characterized by a complex variability in time and space. GNSS observations have become an important source of information of the water vapour, thanks to its high temporal and spatial resolution....
Saved in:
Published in: | Acta geodaetica et geophysica 2023-12, Vol.58 (4), p.575-600 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water vapour is a critical atmospheric parameter to understand the Earth's climate system and it is characterized by a complex variability in time and space. GNSS observations have become an important source of information of the water vapour, thanks to its high temporal and spatial resolution. However, the lack of meteorological sites collocated with the GNSS site could hamper water vapour retrieval. The empirical blind models can fill this gap. This study analyses the temporal and spatial distribution of the water vapour using nine GNSS sites located on the Atlantic coast of Spain and France, with the empirical blind model GPT3 as the source of meteorological information. The observations were processed with Bernese 5.2 software on a double difference approach and validated with Zenith Total Delay EUREF REPRO2 values. Consequently, four-years series of water vapour was determined and validated using two matched radiosonde sites. The characterization of the water vapour on the area shows clear seasonal characteristics that the technique captures, using an empirical blind model for the whole process. Maximum values are observed in summer season and minimum in winter. The PWV tends to decrease with increasing latitude in the area of the study. The short-term variations can be reproduced by the high temporal resolution of the GNSS-retrieved water vapour and show a different behaviour over the area, but a similar pattern with a peak in the afternoon and minimum at night was found. Also, less variability is observed in winter season and higher in summertime. |
---|---|
ISSN: | 2213-5812 2213-5820 |
DOI: | 10.1007/s40328-023-00427-6 |