Loading…

Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators

Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Di...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-12
Main Authors: Cai, Jingwei, Wu, Zuotong, Sen, Peng, Wei, Yuchen, Tan, Zhanhong, Shi, Guiming, Gao, Mingyu, Ma, Kaisheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cai, Jingwei
Wu, Zuotong
Sen, Peng
Wei, Yuchen
Tan, Zhanhong
Shi, Guiming
Gao, Mingyu
Ma, Kaisheng
description Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Die-to-Die (D2D) interfaces, which require more area, consume higher power, and offer lower bandwidth than on-chip interconnects. Maximizing the benefits and minimizing the drawbacks of chiplet technology is crucial for developing large-scale DNN chiplet accelerators, which poses challenges to both architecture and mapping. Despite its importance in the post-Moore era, methods to address these challenges remain scarce.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2907604260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907604260</sourcerecordid><originalsourceid>FETCH-proquest_journals_29076042603</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCIr6DhecAzHVVt1K_Ru0k4ObhHirkZjEmxR8fDv4AE5nOF-PDWWWzfhyLuWATWJ8CiFkXsjFIhuyyx5fxpk1nFQIxt1BuRuUpB8moU4tIVSe4ydYTyoZ76DxBEdFd-RRK4uwqWuoHiZYTFBqjRY76CmOWb9RNuLk1xGb7rbn6sAD-XeLMV2fviXXratciSIXc5mL7D_1BTf6QTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907604260</pqid></control><display><type>article</type><title>Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators</title><source>Publicly Available Content Database</source><creator>Cai, Jingwei ; Wu, Zuotong ; Sen, Peng ; Wei, Yuchen ; Tan, Zhanhong ; Shi, Guiming ; Gao, Mingyu ; Ma, Kaisheng</creator><creatorcontrib>Cai, Jingwei ; Wu, Zuotong ; Sen, Peng ; Wei, Yuchen ; Tan, Zhanhong ; Shi, Guiming ; Gao, Mingyu ; Ma, Kaisheng</creatorcontrib><description>Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Die-to-Die (D2D) interfaces, which require more area, consume higher power, and offer lower bandwidth than on-chip interconnects. Maximizing the benefits and minimizing the drawbacks of chiplet technology is crucial for developing large-scale DNN chiplet accelerators, which poses challenges to both architecture and mapping. Despite its importance in the post-Moore era, methods to address these challenges remain scarce.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accelerators ; Mapping ; Power consumption</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2907604260?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cai, Jingwei</creatorcontrib><creatorcontrib>Wu, Zuotong</creatorcontrib><creatorcontrib>Sen, Peng</creatorcontrib><creatorcontrib>Wei, Yuchen</creatorcontrib><creatorcontrib>Tan, Zhanhong</creatorcontrib><creatorcontrib>Shi, Guiming</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Ma, Kaisheng</creatorcontrib><title>Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators</title><title>arXiv.org</title><description>Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Die-to-Die (D2D) interfaces, which require more area, consume higher power, and offer lower bandwidth than on-chip interconnects. Maximizing the benefits and minimizing the drawbacks of chiplet technology is crucial for developing large-scale DNN chiplet accelerators, which poses challenges to both architecture and mapping. Despite its importance in the post-Moore era, methods to address these challenges remain scarce.</description><subject>Accelerators</subject><subject>Mapping</subject><subject>Power consumption</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCIr6DhecAzHVVt1K_Ru0k4ObhHirkZjEmxR8fDv4AE5nOF-PDWWWzfhyLuWATWJ8CiFkXsjFIhuyyx5fxpk1nFQIxt1BuRuUpB8moU4tIVSe4ydYTyoZ76DxBEdFd-RRK4uwqWuoHiZYTFBqjRY76CmOWb9RNuLk1xGb7rbn6sAD-XeLMV2fviXXratciSIXc5mL7D_1BTf6QTY</recordid><startdate>20231227</startdate><enddate>20231227</enddate><creator>Cai, Jingwei</creator><creator>Wu, Zuotong</creator><creator>Sen, Peng</creator><creator>Wei, Yuchen</creator><creator>Tan, Zhanhong</creator><creator>Shi, Guiming</creator><creator>Gao, Mingyu</creator><creator>Ma, Kaisheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231227</creationdate><title>Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators</title><author>Cai, Jingwei ; Wu, Zuotong ; Sen, Peng ; Wei, Yuchen ; Tan, Zhanhong ; Shi, Guiming ; Gao, Mingyu ; Ma, Kaisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29076042603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerators</topic><topic>Mapping</topic><topic>Power consumption</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Jingwei</creatorcontrib><creatorcontrib>Wu, Zuotong</creatorcontrib><creatorcontrib>Sen, Peng</creatorcontrib><creatorcontrib>Wei, Yuchen</creatorcontrib><creatorcontrib>Tan, Zhanhong</creatorcontrib><creatorcontrib>Shi, Guiming</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Ma, Kaisheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Jingwei</au><au>Wu, Zuotong</au><au>Sen, Peng</au><au>Wei, Yuchen</au><au>Tan, Zhanhong</au><au>Shi, Guiming</au><au>Gao, Mingyu</au><au>Ma, Kaisheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators</atitle><jtitle>arXiv.org</jtitle><date>2023-12-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Die-to-Die (D2D) interfaces, which require more area, consume higher power, and offer lower bandwidth than on-chip interconnects. Maximizing the benefits and minimizing the drawbacks of chiplet technology is crucial for developing large-scale DNN chiplet accelerators, which poses challenges to both architecture and mapping. Despite its importance in the post-Moore era, methods to address these challenges remain scarce.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2907604260
source Publicly Available Content Database
subjects Accelerators
Mapping
Power consumption
title Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Gemini:%20Mapping%20and%20Architecture%20Co-exploration%20for%20Large-scale%20DNN%20Chiplet%20Accelerators&rft.jtitle=arXiv.org&rft.au=Cai,%20Jingwei&rft.date=2023-12-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2907604260%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29076042603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2907604260&rft_id=info:pmid/&rfr_iscdi=true