Loading…
Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators
Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Di...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cai, Jingwei Wu, Zuotong Sen, Peng Wei, Yuchen Tan, Zhanhong Shi, Guiming Gao, Mingyu Ma, Kaisheng |
description | Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Die-to-Die (D2D) interfaces, which require more area, consume higher power, and offer lower bandwidth than on-chip interconnects. Maximizing the benefits and minimizing the drawbacks of chiplet technology is crucial for developing large-scale DNN chiplet accelerators, which poses challenges to both architecture and mapping. Despite its importance in the post-Moore era, methods to address these challenges remain scarce. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2907604260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907604260</sourcerecordid><originalsourceid>FETCH-proquest_journals_29076042603</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCIr6DhecAzHVVt1K_Ru0k4ObhHirkZjEmxR8fDv4AE5nOF-PDWWWzfhyLuWATWJ8CiFkXsjFIhuyyx5fxpk1nFQIxt1BuRuUpB8moU4tIVSe4ydYTyoZ76DxBEdFd-RRK4uwqWuoHiZYTFBqjRY76CmOWb9RNuLk1xGb7rbn6sAD-XeLMV2fviXXratciSIXc5mL7D_1BTf6QTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907604260</pqid></control><display><type>article</type><title>Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators</title><source>Publicly Available Content Database</source><creator>Cai, Jingwei ; Wu, Zuotong ; Sen, Peng ; Wei, Yuchen ; Tan, Zhanhong ; Shi, Guiming ; Gao, Mingyu ; Ma, Kaisheng</creator><creatorcontrib>Cai, Jingwei ; Wu, Zuotong ; Sen, Peng ; Wei, Yuchen ; Tan, Zhanhong ; Shi, Guiming ; Gao, Mingyu ; Ma, Kaisheng</creatorcontrib><description>Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Die-to-Die (D2D) interfaces, which require more area, consume higher power, and offer lower bandwidth than on-chip interconnects. Maximizing the benefits and minimizing the drawbacks of chiplet technology is crucial for developing large-scale DNN chiplet accelerators, which poses challenges to both architecture and mapping. Despite its importance in the post-Moore era, methods to address these challenges remain scarce.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accelerators ; Mapping ; Power consumption</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2907604260?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cai, Jingwei</creatorcontrib><creatorcontrib>Wu, Zuotong</creatorcontrib><creatorcontrib>Sen, Peng</creatorcontrib><creatorcontrib>Wei, Yuchen</creatorcontrib><creatorcontrib>Tan, Zhanhong</creatorcontrib><creatorcontrib>Shi, Guiming</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Ma, Kaisheng</creatorcontrib><title>Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators</title><title>arXiv.org</title><description>Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Die-to-Die (D2D) interfaces, which require more area, consume higher power, and offer lower bandwidth than on-chip interconnects. Maximizing the benefits and minimizing the drawbacks of chiplet technology is crucial for developing large-scale DNN chiplet accelerators, which poses challenges to both architecture and mapping. Despite its importance in the post-Moore era, methods to address these challenges remain scarce.</description><subject>Accelerators</subject><subject>Mapping</subject><subject>Power consumption</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCIr6DhecAzHVVt1K_Ru0k4ObhHirkZjEmxR8fDv4AE5nOF-PDWWWzfhyLuWATWJ8CiFkXsjFIhuyyx5fxpk1nFQIxt1BuRuUpB8moU4tIVSe4ydYTyoZ76DxBEdFd-RRK4uwqWuoHiZYTFBqjRY76CmOWb9RNuLk1xGb7rbn6sAD-XeLMV2fviXXratciSIXc5mL7D_1BTf6QTY</recordid><startdate>20231227</startdate><enddate>20231227</enddate><creator>Cai, Jingwei</creator><creator>Wu, Zuotong</creator><creator>Sen, Peng</creator><creator>Wei, Yuchen</creator><creator>Tan, Zhanhong</creator><creator>Shi, Guiming</creator><creator>Gao, Mingyu</creator><creator>Ma, Kaisheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231227</creationdate><title>Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators</title><author>Cai, Jingwei ; Wu, Zuotong ; Sen, Peng ; Wei, Yuchen ; Tan, Zhanhong ; Shi, Guiming ; Gao, Mingyu ; Ma, Kaisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29076042603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerators</topic><topic>Mapping</topic><topic>Power consumption</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Jingwei</creatorcontrib><creatorcontrib>Wu, Zuotong</creatorcontrib><creatorcontrib>Sen, Peng</creatorcontrib><creatorcontrib>Wei, Yuchen</creatorcontrib><creatorcontrib>Tan, Zhanhong</creatorcontrib><creatorcontrib>Shi, Guiming</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Ma, Kaisheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Jingwei</au><au>Wu, Zuotong</au><au>Sen, Peng</au><au>Wei, Yuchen</au><au>Tan, Zhanhong</au><au>Shi, Guiming</au><au>Gao, Mingyu</au><au>Ma, Kaisheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators</atitle><jtitle>arXiv.org</jtitle><date>2023-12-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Chiplet technology enables the integration of an increasing number of transistors on a single accelerator with higher yield in the post-Moore era, addressing the immense computational demands arising from rapid AI advancements. However, it also introduces more expensive packaging costs and costly Die-to-Die (D2D) interfaces, which require more area, consume higher power, and offer lower bandwidth than on-chip interconnects. Maximizing the benefits and minimizing the drawbacks of chiplet technology is crucial for developing large-scale DNN chiplet accelerators, which poses challenges to both architecture and mapping. Despite its importance in the post-Moore era, methods to address these challenges remain scarce.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2907604260 |
source | Publicly Available Content Database |
subjects | Accelerators Mapping Power consumption |
title | Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Gemini:%20Mapping%20and%20Architecture%20Co-exploration%20for%20Large-scale%20DNN%20Chiplet%20Accelerators&rft.jtitle=arXiv.org&rft.au=Cai,%20Jingwei&rft.date=2023-12-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2907604260%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29076042603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2907604260&rft_id=info:pmid/&rfr_iscdi=true |