Loading…

Superhydrophobic treatment of PDMS-based microfluidic devices using CO2 laser ablation

This study proposed a two-step simple method for rapid superhydrophobic surface modification of PDMS for PDMS-based microfluidics. A laser-patterned PMMA plate was used as the mask for the following selective CO 2 laser surface treatment on PDMS. The water contact angle, SEM and ATR-FTIR analysis we...

Full description

Saved in:
Bibliographic Details
Published in:Microfluidics and nanofluidics 2024-02, Vol.28 (2), p.8, Article 8
Main Authors: Yajun, Zhang, Jingji, Liu, Xie, Yumeng, Liang, Kunming, Zhang, Zhe, Yang, Chen, Yiqiang, Fan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-15e383d76b539857ba3d0d34a8799430689d8c5d8ecd3d9f59f24df63e7298e13
container_end_page
container_issue 2
container_start_page 8
container_title Microfluidics and nanofluidics
container_volume 28
creator Yajun, Zhang
Jingji, Liu
Xie, Yumeng
Liang, Kunming
Zhang, Zhe
Yang, Chen
Yiqiang, Fan
description This study proposed a two-step simple method for rapid superhydrophobic surface modification of PDMS for PDMS-based microfluidics. A laser-patterned PMMA plate was used as the mask for the following selective CO 2 laser surface treatment on PDMS. The water contact angle, SEM and ATR-FTIR analysis were conducted for the characterization of the proposed superhydrophobic surface modification method for PDMS. The result shows that the water contact angle on the modified PDMS surface reaches around 160° with the laser power of 12 W and with a scanning speed of 60 mm/s. This method aims to develop a faster, easier, and low-cost method for selective superhydrophobic modification method for PDMS-based microfluidic devices. The proposed method could have wide applications potentials in the microfluidics field, especially for PDMS-based droplet microfluidics.
doi_str_mv 10.1007/s10404-023-02698-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2907824588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907824588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-15e383d76b539857ba3d0d34a8799430689d8c5d8ecd3d9f59f24df63e7298e13</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MX7G9ROUpFRWpwNZyYqdN1SbBTpD69xiCYMdiNLM4d0ZzEDoncEkA5FUkwIFnQFmqXKtMHKAJyQnLuNZw-DsreoxOYtwAcEkJTNDbcuh8WO9daLt1W9Ql7oO3_c43PW4r_HzztMwKG73Du7oMbbUdapcg5z_q0kc8xLpZ4dmC4m2CArbF1vZ125yio8puoz_76VP0enf7MnvI5ov7x9n1PCuphD4jwjPFnMwLwbQSsrDMgWPcKqk1Z5Ar7VQpnPKlY05XQleUuypnXlKtPGFTdDHu7UL7PvjYm007hCadNFSDVJQLpRJFRyp9EGPwlelCvbNhbwiYL39m9GeSP_Ptz4gUYmMoJrhZ-fC3-p_UJ84Ucpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907824588</pqid></control><display><type>article</type><title>Superhydrophobic treatment of PDMS-based microfluidic devices using CO2 laser ablation</title><source>Springer Link</source><creator>Yajun, Zhang ; Jingji, Liu ; Xie, Yumeng ; Liang, Kunming ; Zhang, Zhe ; Yang, Chen ; Yiqiang, Fan</creator><creatorcontrib>Yajun, Zhang ; Jingji, Liu ; Xie, Yumeng ; Liang, Kunming ; Zhang, Zhe ; Yang, Chen ; Yiqiang, Fan</creatorcontrib><description>This study proposed a two-step simple method for rapid superhydrophobic surface modification of PDMS for PDMS-based microfluidics. A laser-patterned PMMA plate was used as the mask for the following selective CO 2 laser surface treatment on PDMS. The water contact angle, SEM and ATR-FTIR analysis were conducted for the characterization of the proposed superhydrophobic surface modification method for PDMS. The result shows that the water contact angle on the modified PDMS surface reaches around 160° with the laser power of 12 W and with a scanning speed of 60 mm/s. This method aims to develop a faster, easier, and low-cost method for selective superhydrophobic modification method for PDMS-based microfluidic devices. The proposed method could have wide applications potentials in the microfluidics field, especially for PDMS-based droplet microfluidics.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-023-02698-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Carbon dioxide ; Carbon dioxide lasers ; Contact angle ; Engineering ; Engineering Fluid Dynamics ; Hydrophobic surfaces ; Hydrophobicity ; Laser ablation ; Lasers ; Microfluidic devices ; Microfluidics ; Nanotechnology and Microengineering ; Polymethylmethacrylate ; Surface treatment</subject><ispartof>Microfluidics and nanofluidics, 2024-02, Vol.28 (2), p.8, Article 8</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-15e383d76b539857ba3d0d34a8799430689d8c5d8ecd3d9f59f24df63e7298e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yajun, Zhang</creatorcontrib><creatorcontrib>Jingji, Liu</creatorcontrib><creatorcontrib>Xie, Yumeng</creatorcontrib><creatorcontrib>Liang, Kunming</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Yiqiang, Fan</creatorcontrib><title>Superhydrophobic treatment of PDMS-based microfluidic devices using CO2 laser ablation</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>This study proposed a two-step simple method for rapid superhydrophobic surface modification of PDMS for PDMS-based microfluidics. A laser-patterned PMMA plate was used as the mask for the following selective CO 2 laser surface treatment on PDMS. The water contact angle, SEM and ATR-FTIR analysis were conducted for the characterization of the proposed superhydrophobic surface modification method for PDMS. The result shows that the water contact angle on the modified PDMS surface reaches around 160° with the laser power of 12 W and with a scanning speed of 60 mm/s. This method aims to develop a faster, easier, and low-cost method for selective superhydrophobic modification method for PDMS-based microfluidic devices. The proposed method could have wide applications potentials in the microfluidics field, especially for PDMS-based droplet microfluidics.</description><subject>Ablation</subject><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Contact angle</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Nanotechnology and Microengineering</subject><subject>Polymethylmethacrylate</subject><subject>Surface treatment</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MX7G9ROUpFRWpwNZyYqdN1SbBTpD69xiCYMdiNLM4d0ZzEDoncEkA5FUkwIFnQFmqXKtMHKAJyQnLuNZw-DsreoxOYtwAcEkJTNDbcuh8WO9daLt1W9Ql7oO3_c43PW4r_HzztMwKG73Du7oMbbUdapcg5z_q0kc8xLpZ4dmC4m2CArbF1vZ125yio8puoz_76VP0enf7MnvI5ov7x9n1PCuphD4jwjPFnMwLwbQSsrDMgWPcKqk1Z5Ar7VQpnPKlY05XQleUuypnXlKtPGFTdDHu7UL7PvjYm007hCadNFSDVJQLpRJFRyp9EGPwlelCvbNhbwiYL39m9GeSP_Ptz4gUYmMoJrhZ-fC3-p_UJ84Ucpg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yajun, Zhang</creator><creator>Jingji, Liu</creator><creator>Xie, Yumeng</creator><creator>Liang, Kunming</creator><creator>Zhang, Zhe</creator><creator>Yang, Chen</creator><creator>Yiqiang, Fan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>K9.</scope><scope>L.G</scope></search><sort><creationdate>20240201</creationdate><title>Superhydrophobic treatment of PDMS-based microfluidic devices using CO2 laser ablation</title><author>Yajun, Zhang ; Jingji, Liu ; Xie, Yumeng ; Liang, Kunming ; Zhang, Zhe ; Yang, Chen ; Yiqiang, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-15e383d76b539857ba3d0d34a8799430689d8c5d8ecd3d9f59f24df63e7298e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Contact angle</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Nanotechnology and Microengineering</topic><topic>Polymethylmethacrylate</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yajun, Zhang</creatorcontrib><creatorcontrib>Jingji, Liu</creatorcontrib><creatorcontrib>Xie, Yumeng</creatorcontrib><creatorcontrib>Liang, Kunming</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Yiqiang, Fan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yajun, Zhang</au><au>Jingji, Liu</au><au>Xie, Yumeng</au><au>Liang, Kunming</au><au>Zhang, Zhe</au><au>Yang, Chen</au><au>Yiqiang, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superhydrophobic treatment of PDMS-based microfluidic devices using CO2 laser ablation</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>8</spage><pages>8-</pages><artnum>8</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>This study proposed a two-step simple method for rapid superhydrophobic surface modification of PDMS for PDMS-based microfluidics. A laser-patterned PMMA plate was used as the mask for the following selective CO 2 laser surface treatment on PDMS. The water contact angle, SEM and ATR-FTIR analysis were conducted for the characterization of the proposed superhydrophobic surface modification method for PDMS. The result shows that the water contact angle on the modified PDMS surface reaches around 160° with the laser power of 12 W and with a scanning speed of 60 mm/s. This method aims to develop a faster, easier, and low-cost method for selective superhydrophobic modification method for PDMS-based microfluidic devices. The proposed method could have wide applications potentials in the microfluidics field, especially for PDMS-based droplet microfluidics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-023-02698-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2024-02, Vol.28 (2), p.8, Article 8
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_2907824588
source Springer Link
subjects Ablation
Analytical Chemistry
Biomedical Engineering and Bioengineering
Carbon dioxide
Carbon dioxide lasers
Contact angle
Engineering
Engineering Fluid Dynamics
Hydrophobic surfaces
Hydrophobicity
Laser ablation
Lasers
Microfluidic devices
Microfluidics
Nanotechnology and Microengineering
Polymethylmethacrylate
Surface treatment
title Superhydrophobic treatment of PDMS-based microfluidic devices using CO2 laser ablation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superhydrophobic%20treatment%20of%20PDMS-based%20microfluidic%20devices%20using%20CO2%20laser%20ablation&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Yajun,%20Zhang&rft.date=2024-02-01&rft.volume=28&rft.issue=2&rft.spage=8&rft.pages=8-&rft.artnum=8&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-023-02698-5&rft_dat=%3Cproquest_cross%3E2907824588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-15e383d76b539857ba3d0d34a8799430689d8c5d8ecd3d9f59f24df63e7298e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2907824588&rft_id=info:pmid/&rfr_iscdi=true