Loading…

Knothe’s theory parameters – computational models and examples of practical applications

The theory of Professor Stanislaw Knothe, known as Knothe’s Theory, has been the foundation for practical predictive calculations of the impacts of exploitation for many years. It has enabled the large-scale extraction of coal, salt and metal ores located in the protective pillars of cities and prim...

Full description

Saved in:
Bibliographic Details
Published in:Gospodarka surowcami mineralnymi 2023-01, Vol.39 (4), p.157
Main Author: Misa, Rafał
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The theory of Professor Stanislaw Knothe, known as Knothe’s Theory, has been the foundation for practical predictive calculations of the impacts of exploitation for many years. It has enabled the large-scale extraction of coal, salt and metal ores located in the protective pillars of cities and prime surface structures. Knothe’s Theory has been successfully applied in Polish and global mining for over seventy years, making it one of the most well-known and recognized achievements in Polish mining science. Knothe’s Theory provides a temporal-spatial description of subsidence that relies on four essential parameters: the vertical scale parameter a, the horizontal displacement parameter λ, the horizontal range scale parameter cotβ and the time scale parameter c.This article characterizes the parameters of Knothe’s Theory used in various current applications for calculating subsidence, surface and rock uplift, and other applications of the theory, even beyond its classical form. The presented solutions are based on a mathematical model of the interaction of a complex element and cover topics such as subsidence during full exploitation with roof collapse and full exploitation with backfilling, pillar-room mining, the effect of salt caverns on the surface and salt rock, and fluid deposits and surface uplift caused by changes in the water level within closed coal mines. The article also discusses the evolution of the range angle of the main influences and presents Knothe’s solutions related to time, describing the horizontal displacement parameter λ.
ISSN:0860-0953
2299-2324
DOI:10.24425/gsm.2023.148164