Loading…
Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation
Magnetite-(apatite) ore deposits are interpreted as being formed by the crystallization of iron-rich ultrabasic melts, dominantly generated by the interaction of silicate melts with oxidized P-F-SO 4 -bearing sedimentary rocks. This hypothesis is supported by geologic evidence, experimental studies,...
Saved in:
Published in: | Mineralium deposita 2024, Vol.59 (1), p.189-225 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a386t-3416547fd28c7def3820569f83cce8cfd6d6a7919987243a452bbe68859f01663 |
---|---|
cites | cdi_FETCH-LOGICAL-a386t-3416547fd28c7def3820569f83cce8cfd6d6a7919987243a452bbe68859f01663 |
container_end_page | 225 |
container_issue | 1 |
container_start_page | 189 |
container_title | Mineralium deposita |
container_volume | 59 |
creator | Tornos, Fernando Hanchar, John M. Steele-MacInnis, Matthew Crespo, Elena Kamenetsky, Vadim S. Casquet, Cesar |
description | Magnetite-(apatite) ore deposits are interpreted as being formed by the crystallization of iron-rich ultrabasic melts, dominantly generated by the interaction of silicate melts with oxidized P-F-SO
4
-bearing sedimentary rocks. This hypothesis is supported by geologic evidence, experimental studies, numerical modeling, stable and radiogenic isotope geochemistry, mineralogy, and melt- and mineral-inclusion data. Assimilation of crustal rocks during ascent promotes separation from a silicate magma of Fe-rich, Si-Al-poor melts with low solidus temperatures and viscosities, allowing coalescence, migration, and emplacement at deep to subaerial crustal environments. When the iron-rich melt attains neutral buoyancy, fractional crystallization leads to melt immiscibility similar to that observed in industrial blast furnaces, which promotes separation of massive magnetite ore overlain by different types of “slag” containing actinolite or diopside ± phosphates ± magnetite ± feldspar ± anhydrite ± scapolite, commonly enriched in high field strength elements. The mineralogy and morphology of this iron-depleted cap strongly depend on the depth of emplacement and composition of the iron-rich magma. Most of these systems exhibit high oxygen fugacity, which inhibits the precipitation of significant sulfide mineralization. The initially high
f
O
2
of these systems also promotes the formation of low-Ti ( |
doi_str_mv | 10.1007/s00126-023-01203-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2908201389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908201389</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-3416547fd28c7def3820569f83cce8cfd6d6a7919987243a452bbe68859f01663</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWH9ewFXAjS6iX5KZTLKUYlUouNF1yGQy05T5M5lS6tObtoI7V7mQe88HB6EbCg8UoHiMAJQJAoyTFICT7Qma0YwzQqUQp2gGkL6zXMlzdBHjGgAUzWCGVoshdGbyQ4-HGnem6d3kJ0fuzGj24R7HXZxcF3G5wzakbNrWf_u-wZt2CqY00Vvsw9CT4O0Kd66dIjZ9hWNrGhzdaMIBf4XOatNGd_37XqLPxfPH_JUs31_e5k9LYrgUE-EZFXlW1BWTtqhczSWDXKhacmudtHUlKmEKRZWSBcu4yXJWlk5ImasaqBD8Et0euWMYvjYuTno9bEKfTmqmINEolyq12LFlwxBjcLUeg-9M2GkKem9UH43qZFQfjOptGvHjKKZy37jwh_5n9QPOFXp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908201389</pqid></control><display><type>article</type><title>Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation</title><source>Springer Link</source><creator>Tornos, Fernando ; Hanchar, John M. ; Steele-MacInnis, Matthew ; Crespo, Elena ; Kamenetsky, Vadim S. ; Casquet, Cesar</creator><creatorcontrib>Tornos, Fernando ; Hanchar, John M. ; Steele-MacInnis, Matthew ; Crespo, Elena ; Kamenetsky, Vadim S. ; Casquet, Cesar</creatorcontrib><description>Magnetite-(apatite) ore deposits are interpreted as being formed by the crystallization of iron-rich ultrabasic melts, dominantly generated by the interaction of silicate melts with oxidized P-F-SO
4
-bearing sedimentary rocks. This hypothesis is supported by geologic evidence, experimental studies, numerical modeling, stable and radiogenic isotope geochemistry, mineralogy, and melt- and mineral-inclusion data. Assimilation of crustal rocks during ascent promotes separation from a silicate magma of Fe-rich, Si-Al-poor melts with low solidus temperatures and viscosities, allowing coalescence, migration, and emplacement at deep to subaerial crustal environments. When the iron-rich melt attains neutral buoyancy, fractional crystallization leads to melt immiscibility similar to that observed in industrial blast furnaces, which promotes separation of massive magnetite ore overlain by different types of “slag” containing actinolite or diopside ± phosphates ± magnetite ± feldspar ± anhydrite ± scapolite, commonly enriched in high field strength elements. The mineralogy and morphology of this iron-depleted cap strongly depend on the depth of emplacement and composition of the iron-rich magma. Most of these systems exhibit high oxygen fugacity, which inhibits the precipitation of significant sulfide mineralization. The initially high
f
O
2
of these systems also promotes the formation of low-Ti (< 1 wt%) magnetite: Ti acts as an incompatible component and is enriched in the iron-poor caps and in the hydrothermal aureole. High fluid-phase pressures produced during massive crystallization of magnetite from the melt further facilitate the exsolution of magmatic-hydrothermal fluids responsible for the formation of aureoles of alkali-calcic-iron alteration with hydrothermal replacement-style iron mineralization. On the whole, these systems are dramatically different from the magmatic-hydrothermal systems related to intermediate to felsic igneous rocks; they are more akin to carbonatite and other ultramafic rocks.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-023-01203-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anhydrite ; Apatite ; Calcium magnesium silicates ; Coalescence ; Crystallization ; Diopside ; Earth and Environmental Science ; Earth Sciences ; Feldspars ; Field strength ; Fluids ; Fractional crystallization ; Fugacity ; Furnaces ; Geochemistry ; Geology ; Hydrothermal systems ; Igneous rocks ; Immiscibility ; Iron ; Isotopes ; Lava ; Magma ; Magnetite ; Melts (crystal growth) ; Mineral deposits ; Mineral inclusions ; Mineral Resources ; Mineralization ; Mineralogy ; Miscibility ; Numerical models ; Phosphates ; Radiogenic materials ; Sedimentary rocks ; Separation ; Silicates ; Silicon ; Slag ; Solidus ; Sulphates ; Sulphides ; Ultramafic rocks</subject><ispartof>Mineralium deposita, 2024, Vol.59 (1), p.189-225</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-3416547fd28c7def3820569f83cce8cfd6d6a7919987243a452bbe68859f01663</citedby><cites>FETCH-LOGICAL-a386t-3416547fd28c7def3820569f83cce8cfd6d6a7919987243a452bbe68859f01663</cites><orcidid>0000-0002-3648-0427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tornos, Fernando</creatorcontrib><creatorcontrib>Hanchar, John M.</creatorcontrib><creatorcontrib>Steele-MacInnis, Matthew</creatorcontrib><creatorcontrib>Crespo, Elena</creatorcontrib><creatorcontrib>Kamenetsky, Vadim S.</creatorcontrib><creatorcontrib>Casquet, Cesar</creatorcontrib><title>Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Magnetite-(apatite) ore deposits are interpreted as being formed by the crystallization of iron-rich ultrabasic melts, dominantly generated by the interaction of silicate melts with oxidized P-F-SO
4
-bearing sedimentary rocks. This hypothesis is supported by geologic evidence, experimental studies, numerical modeling, stable and radiogenic isotope geochemistry, mineralogy, and melt- and mineral-inclusion data. Assimilation of crustal rocks during ascent promotes separation from a silicate magma of Fe-rich, Si-Al-poor melts with low solidus temperatures and viscosities, allowing coalescence, migration, and emplacement at deep to subaerial crustal environments. When the iron-rich melt attains neutral buoyancy, fractional crystallization leads to melt immiscibility similar to that observed in industrial blast furnaces, which promotes separation of massive magnetite ore overlain by different types of “slag” containing actinolite or diopside ± phosphates ± magnetite ± feldspar ± anhydrite ± scapolite, commonly enriched in high field strength elements. The mineralogy and morphology of this iron-depleted cap strongly depend on the depth of emplacement and composition of the iron-rich magma. Most of these systems exhibit high oxygen fugacity, which inhibits the precipitation of significant sulfide mineralization. The initially high
f
O
2
of these systems also promotes the formation of low-Ti (< 1 wt%) magnetite: Ti acts as an incompatible component and is enriched in the iron-poor caps and in the hydrothermal aureole. High fluid-phase pressures produced during massive crystallization of magnetite from the melt further facilitate the exsolution of magmatic-hydrothermal fluids responsible for the formation of aureoles of alkali-calcic-iron alteration with hydrothermal replacement-style iron mineralization. On the whole, these systems are dramatically different from the magmatic-hydrothermal systems related to intermediate to felsic igneous rocks; they are more akin to carbonatite and other ultramafic rocks.</description><subject>Anhydrite</subject><subject>Apatite</subject><subject>Calcium magnesium silicates</subject><subject>Coalescence</subject><subject>Crystallization</subject><subject>Diopside</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Feldspars</subject><subject>Field strength</subject><subject>Fluids</subject><subject>Fractional crystallization</subject><subject>Fugacity</subject><subject>Furnaces</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrothermal systems</subject><subject>Igneous rocks</subject><subject>Immiscibility</subject><subject>Iron</subject><subject>Isotopes</subject><subject>Lava</subject><subject>Magma</subject><subject>Magnetite</subject><subject>Melts (crystal growth)</subject><subject>Mineral deposits</subject><subject>Mineral inclusions</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Miscibility</subject><subject>Numerical models</subject><subject>Phosphates</subject><subject>Radiogenic materials</subject><subject>Sedimentary rocks</subject><subject>Separation</subject><subject>Silicates</subject><subject>Silicon</subject><subject>Slag</subject><subject>Solidus</subject><subject>Sulphates</subject><subject>Sulphides</subject><subject>Ultramafic rocks</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWH9ewFXAjS6iX5KZTLKUYlUouNF1yGQy05T5M5lS6tObtoI7V7mQe88HB6EbCg8UoHiMAJQJAoyTFICT7Qma0YwzQqUQp2gGkL6zXMlzdBHjGgAUzWCGVoshdGbyQ4-HGnem6d3kJ0fuzGj24R7HXZxcF3G5wzakbNrWf_u-wZt2CqY00Vvsw9CT4O0Kd66dIjZ9hWNrGhzdaMIBf4XOatNGd_37XqLPxfPH_JUs31_e5k9LYrgUE-EZFXlW1BWTtqhczSWDXKhacmudtHUlKmEKRZWSBcu4yXJWlk5ImasaqBD8Et0euWMYvjYuTno9bEKfTmqmINEolyq12LFlwxBjcLUeg-9M2GkKem9UH43qZFQfjOptGvHjKKZy37jwh_5n9QPOFXp0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tornos, Fernando</creator><creator>Hanchar, John M.</creator><creator>Steele-MacInnis, Matthew</creator><creator>Crespo, Elena</creator><creator>Kamenetsky, Vadim S.</creator><creator>Casquet, Cesar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3648-0427</orcidid></search><sort><creationdate>2024</creationdate><title>Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation</title><author>Tornos, Fernando ; Hanchar, John M. ; Steele-MacInnis, Matthew ; Crespo, Elena ; Kamenetsky, Vadim S. ; Casquet, Cesar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-3416547fd28c7def3820569f83cce8cfd6d6a7919987243a452bbe68859f01663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anhydrite</topic><topic>Apatite</topic><topic>Calcium magnesium silicates</topic><topic>Coalescence</topic><topic>Crystallization</topic><topic>Diopside</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Feldspars</topic><topic>Field strength</topic><topic>Fluids</topic><topic>Fractional crystallization</topic><topic>Fugacity</topic><topic>Furnaces</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrothermal systems</topic><topic>Igneous rocks</topic><topic>Immiscibility</topic><topic>Iron</topic><topic>Isotopes</topic><topic>Lava</topic><topic>Magma</topic><topic>Magnetite</topic><topic>Melts (crystal growth)</topic><topic>Mineral deposits</topic><topic>Mineral inclusions</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Miscibility</topic><topic>Numerical models</topic><topic>Phosphates</topic><topic>Radiogenic materials</topic><topic>Sedimentary rocks</topic><topic>Separation</topic><topic>Silicates</topic><topic>Silicon</topic><topic>Slag</topic><topic>Solidus</topic><topic>Sulphates</topic><topic>Sulphides</topic><topic>Ultramafic rocks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tornos, Fernando</creatorcontrib><creatorcontrib>Hanchar, John M.</creatorcontrib><creatorcontrib>Steele-MacInnis, Matthew</creatorcontrib><creatorcontrib>Crespo, Elena</creatorcontrib><creatorcontrib>Kamenetsky, Vadim S.</creatorcontrib><creatorcontrib>Casquet, Cesar</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tornos, Fernando</au><au>Hanchar, John M.</au><au>Steele-MacInnis, Matthew</au><au>Crespo, Elena</au><au>Kamenetsky, Vadim S.</au><au>Casquet, Cesar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2024</date><risdate>2024</risdate><volume>59</volume><issue>1</issue><spage>189</spage><epage>225</epage><pages>189-225</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Magnetite-(apatite) ore deposits are interpreted as being formed by the crystallization of iron-rich ultrabasic melts, dominantly generated by the interaction of silicate melts with oxidized P-F-SO
4
-bearing sedimentary rocks. This hypothesis is supported by geologic evidence, experimental studies, numerical modeling, stable and radiogenic isotope geochemistry, mineralogy, and melt- and mineral-inclusion data. Assimilation of crustal rocks during ascent promotes separation from a silicate magma of Fe-rich, Si-Al-poor melts with low solidus temperatures and viscosities, allowing coalescence, migration, and emplacement at deep to subaerial crustal environments. When the iron-rich melt attains neutral buoyancy, fractional crystallization leads to melt immiscibility similar to that observed in industrial blast furnaces, which promotes separation of massive magnetite ore overlain by different types of “slag” containing actinolite or diopside ± phosphates ± magnetite ± feldspar ± anhydrite ± scapolite, commonly enriched in high field strength elements. The mineralogy and morphology of this iron-depleted cap strongly depend on the depth of emplacement and composition of the iron-rich magma. Most of these systems exhibit high oxygen fugacity, which inhibits the precipitation of significant sulfide mineralization. The initially high
f
O
2
of these systems also promotes the formation of low-Ti (< 1 wt%) magnetite: Ti acts as an incompatible component and is enriched in the iron-poor caps and in the hydrothermal aureole. High fluid-phase pressures produced during massive crystallization of magnetite from the melt further facilitate the exsolution of magmatic-hydrothermal fluids responsible for the formation of aureoles of alkali-calcic-iron alteration with hydrothermal replacement-style iron mineralization. On the whole, these systems are dramatically different from the magmatic-hydrothermal systems related to intermediate to felsic igneous rocks; they are more akin to carbonatite and other ultramafic rocks.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-023-01203-w</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-3648-0427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2024, Vol.59 (1), p.189-225 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_2908201389 |
source | Springer Link |
subjects | Anhydrite Apatite Calcium magnesium silicates Coalescence Crystallization Diopside Earth and Environmental Science Earth Sciences Feldspars Field strength Fluids Fractional crystallization Fugacity Furnaces Geochemistry Geology Hydrothermal systems Igneous rocks Immiscibility Iron Isotopes Lava Magma Magnetite Melts (crystal growth) Mineral deposits Mineral inclusions Mineral Resources Mineralization Mineralogy Miscibility Numerical models Phosphates Radiogenic materials Sedimentary rocks Separation Silicates Silicon Slag Solidus Sulphates Sulphides Ultramafic rocks |
title | Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20magnetite-(apatite)%20systems%20by%20crystallizing%20ultrabasic%20iron-rich%20melts%20and%20slag%20separation&rft.jtitle=Mineralium%20deposita&rft.au=Tornos,%20Fernando&rft.date=2024&rft.volume=59&rft.issue=1&rft.spage=189&rft.epage=225&rft.pages=189-225&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-023-01203-w&rft_dat=%3Cproquest_cross%3E2908201389%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a386t-3416547fd28c7def3820569f83cce8cfd6d6a7919987243a452bbe68859f01663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2908201389&rft_id=info:pmid/&rfr_iscdi=true |