Loading…

Millimeter-wave Wideband High-isolation Antenna Array Based on End-fire Magnetoelectric Dipole Antenna for 5G Applications

In this paper, a millimeter-wave (mmW) wideband high-isolation wide-angle scanning antenna is presented. The end-fire magnetoelectric (ME) dipole with wideband impedance characteristic and wide beamwidth is selected. Based on the ME dipole, a 1×4 subarray with a stripline feed network is constructed...

Full description

Saved in:
Bibliographic Details
Published in:Applied Computational Electromagnetics Society journal 2022, Vol.37 (11), p.1170
Main Authors: Fan, Fang-Fang, Chen, Qing-Lin, Qin, Kai
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a millimeter-wave (mmW) wideband high-isolation wide-angle scanning antenna is presented. The end-fire magnetoelectric (ME) dipole with wideband impedance characteristic and wide beamwidth is selected. Based on the ME dipole, a 1×4 subarray with a stripline feed network is constructed to get higher antenna efficiency. Then, four 1×4 subarrays are adopted to form a 4×4 array to realize the wide-angle scanning performance. Furthermore, to get better isolation between the subarrays, the beam is tilted on the non-scanning plane; in addition, the resonant split rings are added on the background of the subarrays. With these two measures, the isolation between the subarrays can be effectively reduced, with more than 20 dB over the entire bandwidth. Owing to the wide beamwidth of ME dipole and high isolation between the subarrays, the 4×4 array can obtain the wide-angle scanning characteristic. The final antenna covers an operating bandwidth of 19.5% (24.25-29.5 GHz) with return loss more than 10 dB, which can meet the band in the 5G standard. The beam can scan approximately ±55∘ with a realized gain reduction under 3 dB within the wide operating bandwidth. Also, the simulated radiation efficiency of the array is more than 77% over almost the entire band. The antenna will be a potential candidate to be applied in 5G applications.
ISSN:1054-4887
1943-5711
DOI:10.13052/2022.ACES.J.371108