Loading…
Compressing H2 Matrices for Translationally Invariant Kernels
H2 matrices provide compressed representations of the matrices obtained when discretizing surface and volume integral equations. The memory costs associated with storing H2 matrices for static and low-frequency applications are O(N). However, when the H2 representation is constructed using sparse sa...
Saved in:
Published in: | Applied Computational Electromagnetics Society journal 2020-01, Vol.35 (11), p.1392 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 11 |
container_start_page | 1392 |
container_title | Applied Computational Electromagnetics Society journal |
container_volume | 35 |
creator | Adams, R J Young, J C Gedney, S D |
description | H2 matrices provide compressed representations of the matrices obtained when discretizing surface and volume integral equations. The memory costs associated with storing H2 matrices for static and low-frequency applications are O(N). However, when the H2 representation is constructed using sparse samples of the underlying matrix, the translation matrices in the H2 representation do not preserve any translational invariance present in the underlying kernel. In some cases, this can result in an H2 representation with relatively large memory requirements. This paper outlines a method to compress an existing H2 matrix by constructing a translationally invariant H2 matrix from it. Numerical examples demonstrate that the resulting representation can provide significant memory savings. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2908966160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908966160</sourcerecordid><originalsourceid>FETCH-proquest_journals_29089661603</originalsourceid><addsrcrecordid>eNqNi70KwjAYAIMoWH_eIeBcSJo2TQenolTErXsJkkpKTOr3pYJvbwcfwOluuFuQhFe5SIuS8-XsrMjTXKlyTTaIA2NCiVIm5FiH5wgG0foHbTJ60xHs3SDtA9AWtEenow1eO_ehF__WYLWP9GrAG4c7suq1Q7P_cUsO51NbN-kI4TUZjN0QJphn7LKKqUpKLpn4r_oCfQI5cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908966160</pqid></control><display><type>article</type><title>Compressing H2 Matrices for Translationally Invariant Kernels</title><source>IEEE Xplore All Conference Series</source><source>Publicly Available Content Database</source><source>EZB Free E-Journals</source><creator>Adams, R J ; Young, J C ; Gedney, S D</creator><creatorcontrib>Adams, R J ; Young, J C ; Gedney, S D</creatorcontrib><description>H2 matrices provide compressed representations of the matrices obtained when discretizing surface and volume integral equations. The memory costs associated with storing H2 matrices for static and low-frequency applications are O(N). However, when the H2 representation is constructed using sparse samples of the underlying matrix, the translation matrices in the H2 representation do not preserve any translational invariance present in the underlying kernel. In some cases, this can result in an H2 representation with relatively large memory requirements. This paper outlines a method to compress an existing H2 matrix by constructing a translationally invariant H2 matrix from it. Numerical examples demonstrate that the resulting representation can provide significant memory savings.</description><identifier>ISSN: 1054-4887</identifier><identifier>EISSN: 1943-5711</identifier><language>eng</language><publisher>Pisa: River Publishers</publisher><subject>Computer engineering ; Integral equations ; Invariants ; Representations ; Volume integral equations</subject><ispartof>Applied Computational Electromagnetics Society journal, 2020-01, Vol.35 (11), p.1392</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2908966160?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Adams, R J</creatorcontrib><creatorcontrib>Young, J C</creatorcontrib><creatorcontrib>Gedney, S D</creatorcontrib><title>Compressing H2 Matrices for Translationally Invariant Kernels</title><title>Applied Computational Electromagnetics Society journal</title><description>H2 matrices provide compressed representations of the matrices obtained when discretizing surface and volume integral equations. The memory costs associated with storing H2 matrices for static and low-frequency applications are O(N). However, when the H2 representation is constructed using sparse samples of the underlying matrix, the translation matrices in the H2 representation do not preserve any translational invariance present in the underlying kernel. In some cases, this can result in an H2 representation with relatively large memory requirements. This paper outlines a method to compress an existing H2 matrix by constructing a translationally invariant H2 matrix from it. Numerical examples demonstrate that the resulting representation can provide significant memory savings.</description><subject>Computer engineering</subject><subject>Integral equations</subject><subject>Invariants</subject><subject>Representations</subject><subject>Volume integral equations</subject><issn>1054-4887</issn><issn>1943-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi70KwjAYAIMoWH_eIeBcSJo2TQenolTErXsJkkpKTOr3pYJvbwcfwOluuFuQhFe5SIuS8-XsrMjTXKlyTTaIA2NCiVIm5FiH5wgG0foHbTJ60xHs3SDtA9AWtEenow1eO_ehF__WYLWP9GrAG4c7suq1Q7P_cUsO51NbN-kI4TUZjN0QJphn7LKKqUpKLpn4r_oCfQI5cw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Adams, R J</creator><creator>Young, J C</creator><creator>Gedney, S D</creator><general>River Publishers</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200101</creationdate><title>Compressing H2 Matrices for Translationally Invariant Kernels</title><author>Adams, R J ; Young, J C ; Gedney, S D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29089661603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer engineering</topic><topic>Integral equations</topic><topic>Invariants</topic><topic>Representations</topic><topic>Volume integral equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Adams, R J</creatorcontrib><creatorcontrib>Young, J C</creatorcontrib><creatorcontrib>Gedney, S D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Computational Electromagnetics Society journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, R J</au><au>Young, J C</au><au>Gedney, S D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressing H2 Matrices for Translationally Invariant Kernels</atitle><jtitle>Applied Computational Electromagnetics Society journal</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>35</volume><issue>11</issue><spage>1392</spage><pages>1392-</pages><issn>1054-4887</issn><eissn>1943-5711</eissn><abstract>H2 matrices provide compressed representations of the matrices obtained when discretizing surface and volume integral equations. The memory costs associated with storing H2 matrices for static and low-frequency applications are O(N). However, when the H2 representation is constructed using sparse samples of the underlying matrix, the translation matrices in the H2 representation do not preserve any translational invariance present in the underlying kernel. In some cases, this can result in an H2 representation with relatively large memory requirements. This paper outlines a method to compress an existing H2 matrix by constructing a translationally invariant H2 matrix from it. Numerical examples demonstrate that the resulting representation can provide significant memory savings.</abstract><cop>Pisa</cop><pub>River Publishers</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-4887 |
ispartof | Applied Computational Electromagnetics Society journal, 2020-01, Vol.35 (11), p.1392 |
issn | 1054-4887 1943-5711 |
language | eng |
recordid | cdi_proquest_journals_2908966160 |
source | IEEE Xplore All Conference Series; Publicly Available Content Database; EZB Free E-Journals |
subjects | Computer engineering Integral equations Invariants Representations Volume integral equations |
title | Compressing H2 Matrices for Translationally Invariant Kernels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressing%20H2%20Matrices%20for%20Translationally%20Invariant%20Kernels&rft.jtitle=Applied%20Computational%20Electromagnetics%20Society%20journal&rft.au=Adams,%20R%20J&rft.date=2020-01-01&rft.volume=35&rft.issue=11&rft.spage=1392&rft.pages=1392-&rft.issn=1054-4887&rft.eissn=1943-5711&rft_id=info:doi/&rft_dat=%3Cproquest%3E2908966160%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29089661603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2908966160&rft_id=info:pmid/&rfr_iscdi=true |