Loading…
FE Analysis on Temperature, Electromagnetic Force and Load Capacities of Imperfect Assembled GIB Plug-in Connectors
For purpose of providing effective method of optimal design and failure prediction of plug-in power connector with imperfect assembly conditions, this paper evaluate distributions of operation current, temperature rise and electromagnetic forces of gas insulated bus (GIB) plug-in connector by mechan...
Saved in:
Published in: | Applied Computational Electromagnetics Society journal 2018-06, Vol.33 (6), p.697 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For purpose of providing effective method of optimal design and failure prediction of plug-in power connector with imperfect assembly conditions, this paper evaluate distributions of operation current, temperature rise and electromagnetic forces of gas insulated bus (GIB) plug-in connector by mechanical-electromagneticthermal multi-physics coupled finite element (FE) method. The FE procedure took current constriction effects among contact spots into account by imperfect contact bridge model. Effectiveness of numerical model was verified by physical experiments. Mechanical, electromagnetic and thermal behaviors of plug-in connector under various assembly conditions (preloading force, conductor insert depth and docking angle) were analyzed. Results show that due to the deviations of contact forces, operation currents and temperature rises among contact spots are not uniform. Influenced by overheating and electromagnetic force on several terrible contact spots with larger currents flow through, load capacity of plug-in connector could be reduced to 82%, 46% and 15% of design values with insufficient preloading contact force, insufficient conductor insert depth and docking angles deviation. |
---|---|
ISSN: | 1054-4887 1943-5711 |