Loading…

Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining

High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging re...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2024, Vol.31, p.66-70
Main Authors: Yang, Lihe, Feng, Wei, Wu, Yaojun, Huang, Liang, Quan, Yinghui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3
cites cdi_FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3
container_end_page 70
container_issue
container_start_page 66
container_title IEEE signal processing letters
container_volume 31
creator Yang, Lihe
Feng, Wei
Wu, Yaojun
Huang, Liang
Quan, Yinghui
description High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging resolution. The integration of radar and infrared sensors can synergize their respective strengths to not only improve the reliability and robustness of the system but also enhance the credibility and accuracy of the data. However, there exist many challenges in the research on the fusion of heterogeneous data like HRRP 1D data and infrared 2D data. In this letter, a radar infrared sensor fusion method based on hierarchical features mining (HFM) is proposed to solve the problems above. The method is applied to multi-target recognition tasks to verify the effectiveness. The results demonstrate that the proposed method can enhance the information completeness of the target and improve the accuracy of target recognition.
doi_str_mv 10.1109/LSP.2023.3341397
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911492097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10352926</ieee_id><sourcerecordid>2911492097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXjYxPPiTD9226MQERKMRvTclG6rJbiLLXvgv7cEDp7mZea9mcmPkFuEESKoh8XybUSBshFjHJmqz8gAhZAlZRWeZw01lEqBvCRXKa0BQKIUAzJ-N42J5bz10UTXFEvXpi4W0z6Fri3GJuVeFrPg8tx-B2s2xdSZXR9dKl5CG9qva3LhzSa5m1Mdks_p08dkVi5en-eTx0VpqaK70nsU1tuGrRzjhslaiqapLFje2BVnHmyNAgEdldxWkgJQVLWhUjrLa2nZkNwf925j99u7tNPrro9tPqmpQuSKgqqzC44uG7uUovN6G8OPiXuNoA-kdCalD6T0iVSO3B0jwTn3z85Efrxif5bYY1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911492097</pqid></control><display><type>article</type><title>Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yang, Lihe ; Feng, Wei ; Wu, Yaojun ; Huang, Liang ; Quan, Yinghui</creator><creatorcontrib>Yang, Lihe ; Feng, Wei ; Wu, Yaojun ; Huang, Liang ; Quan, Yinghui</creatorcontrib><description>High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging resolution. The integration of radar and infrared sensors can synergize their respective strengths to not only improve the reliability and robustness of the system but also enhance the credibility and accuracy of the data. However, there exist many challenges in the research on the fusion of heterogeneous data like HRRP 1D data and infrared 2D data. In this letter, a radar infrared sensor fusion method based on hierarchical features mining (HFM) is proposed to solve the problems above. The method is applied to multi-target recognition tasks to verify the effectiveness. The results demonstrate that the proposed method can enhance the information completeness of the target and improve the accuracy of target recognition.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2023.3341397</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data mining ; Electromagnetic interference ; Feature extraction ; Feature fusion ; high resolution range profile (HRRP) ; Image resolution ; Infrared detectors ; infrared images ; Infrared radar ; Infrared sensors ; Jamming ; Radar ; Radar imaging ; Scattering ; support vector machine (SVM) ; Target recognition ; Weather</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.66-70</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3</citedby><cites>FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3</cites><orcidid>0000-0003-1907-2664 ; 0000-0002-2240-8459 ; 0009-0007-5846-849X ; 0009-0007-5803-072X ; 0000-0001-6541-9441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10352926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Yang, Lihe</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Wu, Yaojun</creatorcontrib><creatorcontrib>Huang, Liang</creatorcontrib><creatorcontrib>Quan, Yinghui</creatorcontrib><title>Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging resolution. The integration of radar and infrared sensors can synergize their respective strengths to not only improve the reliability and robustness of the system but also enhance the credibility and accuracy of the data. However, there exist many challenges in the research on the fusion of heterogeneous data like HRRP 1D data and infrared 2D data. In this letter, a radar infrared sensor fusion method based on hierarchical features mining (HFM) is proposed to solve the problems above. The method is applied to multi-target recognition tasks to verify the effectiveness. The results demonstrate that the proposed method can enhance the information completeness of the target and improve the accuracy of target recognition.</description><subject>Data mining</subject><subject>Electromagnetic interference</subject><subject>Feature extraction</subject><subject>Feature fusion</subject><subject>high resolution range profile (HRRP)</subject><subject>Image resolution</subject><subject>Infrared detectors</subject><subject>infrared images</subject><subject>Infrared radar</subject><subject>Infrared sensors</subject><subject>Jamming</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Scattering</subject><subject>support vector machine (SVM)</subject><subject>Target recognition</subject><subject>Weather</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1PAjEQxRujiYjePXjYxPPiTD9226MQERKMRvTclG6rJbiLLXvgv7cEDp7mZea9mcmPkFuEESKoh8XybUSBshFjHJmqz8gAhZAlZRWeZw01lEqBvCRXKa0BQKIUAzJ-N42J5bz10UTXFEvXpi4W0z6Fri3GJuVeFrPg8tx-B2s2xdSZXR9dKl5CG9qva3LhzSa5m1Mdks_p08dkVi5en-eTx0VpqaK70nsU1tuGrRzjhslaiqapLFje2BVnHmyNAgEdldxWkgJQVLWhUjrLa2nZkNwf925j99u7tNPrro9tPqmpQuSKgqqzC44uG7uUovN6G8OPiXuNoA-kdCalD6T0iVSO3B0jwTn3z85Efrxif5bYY1E</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Lihe</creator><creator>Feng, Wei</creator><creator>Wu, Yaojun</creator><creator>Huang, Liang</creator><creator>Quan, Yinghui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1907-2664</orcidid><orcidid>https://orcid.org/0000-0002-2240-8459</orcidid><orcidid>https://orcid.org/0009-0007-5846-849X</orcidid><orcidid>https://orcid.org/0009-0007-5803-072X</orcidid><orcidid>https://orcid.org/0000-0001-6541-9441</orcidid></search><sort><creationdate>2024</creationdate><title>Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining</title><author>Yang, Lihe ; Feng, Wei ; Wu, Yaojun ; Huang, Liang ; Quan, Yinghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data mining</topic><topic>Electromagnetic interference</topic><topic>Feature extraction</topic><topic>Feature fusion</topic><topic>high resolution range profile (HRRP)</topic><topic>Image resolution</topic><topic>Infrared detectors</topic><topic>infrared images</topic><topic>Infrared radar</topic><topic>Infrared sensors</topic><topic>Jamming</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Scattering</topic><topic>support vector machine (SVM)</topic><topic>Target recognition</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lihe</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Wu, Yaojun</creatorcontrib><creatorcontrib>Huang, Liang</creatorcontrib><creatorcontrib>Quan, Yinghui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lihe</au><au>Feng, Wei</au><au>Wu, Yaojun</au><au>Huang, Liang</au><au>Quan, Yinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>66</spage><epage>70</epage><pages>66-70</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging resolution. The integration of radar and infrared sensors can synergize their respective strengths to not only improve the reliability and robustness of the system but also enhance the credibility and accuracy of the data. However, there exist many challenges in the research on the fusion of heterogeneous data like HRRP 1D data and infrared 2D data. In this letter, a radar infrared sensor fusion method based on hierarchical features mining (HFM) is proposed to solve the problems above. The method is applied to multi-target recognition tasks to verify the effectiveness. The results demonstrate that the proposed method can enhance the information completeness of the target and improve the accuracy of target recognition.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2023.3341397</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1907-2664</orcidid><orcidid>https://orcid.org/0000-0002-2240-8459</orcidid><orcidid>https://orcid.org/0009-0007-5846-849X</orcidid><orcidid>https://orcid.org/0009-0007-5803-072X</orcidid><orcidid>https://orcid.org/0000-0001-6541-9441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2024, Vol.31, p.66-70
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2911492097
source IEEE Electronic Library (IEL) Journals
subjects Data mining
Electromagnetic interference
Feature extraction
Feature fusion
high resolution range profile (HRRP)
Image resolution
Infrared detectors
infrared images
Infrared radar
Infrared sensors
Jamming
Radar
Radar imaging
Scattering
support vector machine (SVM)
Target recognition
Weather
title Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radar-Infrared%20Sensor%20Fusion%20Based%20on%20Hierarchical%20Features%20Mining&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Yang,%20Lihe&rft.date=2024&rft.volume=31&rft.spage=66&rft.epage=70&rft.pages=66-70&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2023.3341397&rft_dat=%3Cproquest_cross%3E2911492097%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2911492097&rft_id=info:pmid/&rft_ieee_id=10352926&rfr_iscdi=true