Loading…
Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining
High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging re...
Saved in:
Published in: | IEEE signal processing letters 2024, Vol.31, p.66-70 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3 |
container_end_page | 70 |
container_issue | |
container_start_page | 66 |
container_title | IEEE signal processing letters |
container_volume | 31 |
creator | Yang, Lihe Feng, Wei Wu, Yaojun Huang, Liang Quan, Yinghui |
description | High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging resolution. The integration of radar and infrared sensors can synergize their respective strengths to not only improve the reliability and robustness of the system but also enhance the credibility and accuracy of the data. However, there exist many challenges in the research on the fusion of heterogeneous data like HRRP 1D data and infrared 2D data. In this letter, a radar infrared sensor fusion method based on hierarchical features mining (HFM) is proposed to solve the problems above. The method is applied to multi-target recognition tasks to verify the effectiveness. The results demonstrate that the proposed method can enhance the information completeness of the target and improve the accuracy of target recognition. |
doi_str_mv | 10.1109/LSP.2023.3341397 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911492097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10352926</ieee_id><sourcerecordid>2911492097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXjYxPPiTD9226MQERKMRvTclG6rJbiLLXvgv7cEDp7mZea9mcmPkFuEESKoh8XybUSBshFjHJmqz8gAhZAlZRWeZw01lEqBvCRXKa0BQKIUAzJ-N42J5bz10UTXFEvXpi4W0z6Fri3GJuVeFrPg8tx-B2s2xdSZXR9dKl5CG9qva3LhzSa5m1Mdks_p08dkVi5en-eTx0VpqaK70nsU1tuGrRzjhslaiqapLFje2BVnHmyNAgEdldxWkgJQVLWhUjrLa2nZkNwf925j99u7tNPrro9tPqmpQuSKgqqzC44uG7uUovN6G8OPiXuNoA-kdCalD6T0iVSO3B0jwTn3z85Efrxif5bYY1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911492097</pqid></control><display><type>article</type><title>Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yang, Lihe ; Feng, Wei ; Wu, Yaojun ; Huang, Liang ; Quan, Yinghui</creator><creatorcontrib>Yang, Lihe ; Feng, Wei ; Wu, Yaojun ; Huang, Liang ; Quan, Yinghui</creatorcontrib><description>High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging resolution. The integration of radar and infrared sensors can synergize their respective strengths to not only improve the reliability and robustness of the system but also enhance the credibility and accuracy of the data. However, there exist many challenges in the research on the fusion of heterogeneous data like HRRP 1D data and infrared 2D data. In this letter, a radar infrared sensor fusion method based on hierarchical features mining (HFM) is proposed to solve the problems above. The method is applied to multi-target recognition tasks to verify the effectiveness. The results demonstrate that the proposed method can enhance the information completeness of the target and improve the accuracy of target recognition.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2023.3341397</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data mining ; Electromagnetic interference ; Feature extraction ; Feature fusion ; high resolution range profile (HRRP) ; Image resolution ; Infrared detectors ; infrared images ; Infrared radar ; Infrared sensors ; Jamming ; Radar ; Radar imaging ; Scattering ; support vector machine (SVM) ; Target recognition ; Weather</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.66-70</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3</citedby><cites>FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3</cites><orcidid>0000-0003-1907-2664 ; 0000-0002-2240-8459 ; 0009-0007-5846-849X ; 0009-0007-5803-072X ; 0000-0001-6541-9441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10352926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Yang, Lihe</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Wu, Yaojun</creatorcontrib><creatorcontrib>Huang, Liang</creatorcontrib><creatorcontrib>Quan, Yinghui</creatorcontrib><title>Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging resolution. The integration of radar and infrared sensors can synergize their respective strengths to not only improve the reliability and robustness of the system but also enhance the credibility and accuracy of the data. However, there exist many challenges in the research on the fusion of heterogeneous data like HRRP 1D data and infrared 2D data. In this letter, a radar infrared sensor fusion method based on hierarchical features mining (HFM) is proposed to solve the problems above. The method is applied to multi-target recognition tasks to verify the effectiveness. The results demonstrate that the proposed method can enhance the information completeness of the target and improve the accuracy of target recognition.</description><subject>Data mining</subject><subject>Electromagnetic interference</subject><subject>Feature extraction</subject><subject>Feature fusion</subject><subject>high resolution range profile (HRRP)</subject><subject>Image resolution</subject><subject>Infrared detectors</subject><subject>infrared images</subject><subject>Infrared radar</subject><subject>Infrared sensors</subject><subject>Jamming</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Scattering</subject><subject>support vector machine (SVM)</subject><subject>Target recognition</subject><subject>Weather</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1PAjEQxRujiYjePXjYxPPiTD9226MQERKMRvTclG6rJbiLLXvgv7cEDp7mZea9mcmPkFuEESKoh8XybUSBshFjHJmqz8gAhZAlZRWeZw01lEqBvCRXKa0BQKIUAzJ-N42J5bz10UTXFEvXpi4W0z6Fri3GJuVeFrPg8tx-B2s2xdSZXR9dKl5CG9qva3LhzSa5m1Mdks_p08dkVi5en-eTx0VpqaK70nsU1tuGrRzjhslaiqapLFje2BVnHmyNAgEdldxWkgJQVLWhUjrLa2nZkNwf925j99u7tNPrro9tPqmpQuSKgqqzC44uG7uUovN6G8OPiXuNoA-kdCalD6T0iVSO3B0jwTn3z85Efrxif5bYY1E</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Lihe</creator><creator>Feng, Wei</creator><creator>Wu, Yaojun</creator><creator>Huang, Liang</creator><creator>Quan, Yinghui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1907-2664</orcidid><orcidid>https://orcid.org/0000-0002-2240-8459</orcidid><orcidid>https://orcid.org/0009-0007-5846-849X</orcidid><orcidid>https://orcid.org/0009-0007-5803-072X</orcidid><orcidid>https://orcid.org/0000-0001-6541-9441</orcidid></search><sort><creationdate>2024</creationdate><title>Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining</title><author>Yang, Lihe ; Feng, Wei ; Wu, Yaojun ; Huang, Liang ; Quan, Yinghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data mining</topic><topic>Electromagnetic interference</topic><topic>Feature extraction</topic><topic>Feature fusion</topic><topic>high resolution range profile (HRRP)</topic><topic>Image resolution</topic><topic>Infrared detectors</topic><topic>infrared images</topic><topic>Infrared radar</topic><topic>Infrared sensors</topic><topic>Jamming</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Scattering</topic><topic>support vector machine (SVM)</topic><topic>Target recognition</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lihe</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Wu, Yaojun</creatorcontrib><creatorcontrib>Huang, Liang</creatorcontrib><creatorcontrib>Quan, Yinghui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lihe</au><au>Feng, Wei</au><au>Wu, Yaojun</au><au>Huang, Liang</au><au>Quan, Yinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>66</spage><epage>70</epage><pages>66-70</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>High resolution range profile (HRRP) provides abundant target information but is susceptible to external electromagnetic interference. While infrared sensor possesses strong anti-jamming capability, it has limited detection range and is vulnerable to weather conditions, leading to reduced imaging resolution. The integration of radar and infrared sensors can synergize their respective strengths to not only improve the reliability and robustness of the system but also enhance the credibility and accuracy of the data. However, there exist many challenges in the research on the fusion of heterogeneous data like HRRP 1D data and infrared 2D data. In this letter, a radar infrared sensor fusion method based on hierarchical features mining (HFM) is proposed to solve the problems above. The method is applied to multi-target recognition tasks to verify the effectiveness. The results demonstrate that the proposed method can enhance the information completeness of the target and improve the accuracy of target recognition.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2023.3341397</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1907-2664</orcidid><orcidid>https://orcid.org/0000-0002-2240-8459</orcidid><orcidid>https://orcid.org/0009-0007-5846-849X</orcidid><orcidid>https://orcid.org/0009-0007-5803-072X</orcidid><orcidid>https://orcid.org/0000-0001-6541-9441</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2024, Vol.31, p.66-70 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_2911492097 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Data mining Electromagnetic interference Feature extraction Feature fusion high resolution range profile (HRRP) Image resolution Infrared detectors infrared images Infrared radar Infrared sensors Jamming Radar Radar imaging Scattering support vector machine (SVM) Target recognition Weather |
title | Radar-Infrared Sensor Fusion Based on Hierarchical Features Mining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radar-Infrared%20Sensor%20Fusion%20Based%20on%20Hierarchical%20Features%20Mining&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Yang,%20Lihe&rft.date=2024&rft.volume=31&rft.spage=66&rft.epage=70&rft.pages=66-70&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2023.3341397&rft_dat=%3Cproquest_cross%3E2911492097%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-ff15cfcd3be34a38785dd6c0c4dcb43f0c715101e284c682002197a288ec478c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2911492097&rft_id=info:pmid/&rft_ieee_id=10352926&rfr_iscdi=true |