Loading…

Low-frequency noise in InSnZnO thin film transistors with high-quality SiO2 gate oxide stacks

Low-frequency noise (LFN) in InSnZnO (ITZO) thin-film-transistors (TFT) with high-quality SiO2 gate oxide (GO) stacks is studied. This stack is fabricated by the plasma enhanced chemical vapor deposition (PECVD) and comprises two single layers. One layer is deposited by a SiH4 source (SiH4–SiO2), an...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2024-01, Vol.124 (2)
Main Authors: Chen, Yayi, Liu, Yuan, Deng, Sunbin, Chen, Rongsheng, Zhang, Jianfeng, Kwok, Hoi-Sing, Zhong, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c252t-2d83f82889a5dc0630bfbcd7c4c247507fc6a2bbd4185baba29fab5b7e54468d3
container_end_page
container_issue 2
container_start_page
container_title Applied physics letters
container_volume 124
creator Chen, Yayi
Liu, Yuan
Deng, Sunbin
Chen, Rongsheng
Zhang, Jianfeng
Kwok, Hoi-Sing
Zhong, Wei
description Low-frequency noise (LFN) in InSnZnO (ITZO) thin-film-transistors (TFT) with high-quality SiO2 gate oxide (GO) stacks is studied. This stack is fabricated by the plasma enhanced chemical vapor deposition (PECVD) and comprises two single layers. One layer is deposited by a SiH4 source (SiH4–SiO2), and the other uses a tetraethyl-orthosilicate precursor (TEOS-SiO2). The drain current noise power spectral densities follow the typical 1/f rule, and the main origin of LFN changes with the variation of drain current intensities. At low drain current intensities, LFN is affected by grain boundaries in the channel. As the drain current intensities increase, LFN originates from the carrier number fluctuations in devices with single TEOS-SiO2 GOs and from the carrier number with correlated mobility fluctuations in devices with SiO2 stacks GOs. At extremely high drain current intensities, the contact noise acts as a significant source of LFN in devices with SiO2 GO stacks. According to the carrier number with correlated mobility fluctuation ( Δ N − Δ μ) model, the devices with optimal stacks GOs exhibit a relatively low trap density near the ITZO/SiO2 interface. Additionally, these devices have a lower border trap density in GOs compared to those with single compositions. It demonstrates that high-quality SiO2 stacks reduce traps near the SiO2/ITZO interface, leading to enhanced devices performance. This work provides a precise and efficient method to evaluate the quality of GOs in metal oxide TFTs.
doi_str_mv 10.1063/5.0174250
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911523842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911523842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-2d83f82889a5dc0630bfbcd7c4c247507fc6a2bbd4185baba29fab5b7e54468d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAlUJqkpnMZJZS_CgUuqhuBBmSTNJJbZM2San990batavHhcN9nAvALcEjgqvikY0wqUvK8BkYEFzXqCCEn4MBxrhAVcPIJbiKcZkjo0UxAF9Tv0cm6O1OO3WAztuooXVw4ubu081g6nMwdrWGKQgXbUw-RLi3qYe9XfRouxMrmw5wbmcULkTS0P_YTsOYhPqO1-DCiFXUN6c7BB8vz-_jNzSdvU7GT1OkKKMJ0Y4XhlPOG8E6lTWwNFJ1tSoVLWuGa6MqQaXsSsKZFFLQxgjJZK1ZWVa8K4bg7ti7CT6bxNQu_S64_LKlDSFZlZc0U_dHSgUfY9Cm3QS7FuHQEtz-rdey9rReZh-ObFQ2iWS9-wf-BdjlbyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911523842</pqid></control><display><type>article</type><title>Low-frequency noise in InSnZnO thin film transistors with high-quality SiO2 gate oxide stacks</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chen, Yayi ; Liu, Yuan ; Deng, Sunbin ; Chen, Rongsheng ; Zhang, Jianfeng ; Kwok, Hoi-Sing ; Zhong, Wei</creator><creatorcontrib>Chen, Yayi ; Liu, Yuan ; Deng, Sunbin ; Chen, Rongsheng ; Zhang, Jianfeng ; Kwok, Hoi-Sing ; Zhong, Wei</creatorcontrib><description>Low-frequency noise (LFN) in InSnZnO (ITZO) thin-film-transistors (TFT) with high-quality SiO2 gate oxide (GO) stacks is studied. This stack is fabricated by the plasma enhanced chemical vapor deposition (PECVD) and comprises two single layers. One layer is deposited by a SiH4 source (SiH4–SiO2), and the other uses a tetraethyl-orthosilicate precursor (TEOS-SiO2). The drain current noise power spectral densities follow the typical 1/f rule, and the main origin of LFN changes with the variation of drain current intensities. At low drain current intensities, LFN is affected by grain boundaries in the channel. As the drain current intensities increase, LFN originates from the carrier number fluctuations in devices with single TEOS-SiO2 GOs and from the carrier number with correlated mobility fluctuations in devices with SiO2 stacks GOs. At extremely high drain current intensities, the contact noise acts as a significant source of LFN in devices with SiO2 GO stacks. According to the carrier number with correlated mobility fluctuation ( Δ N − Δ μ) model, the devices with optimal stacks GOs exhibit a relatively low trap density near the ITZO/SiO2 interface. Additionally, these devices have a lower border trap density in GOs compared to those with single compositions. It demonstrates that high-quality SiO2 stacks reduce traps near the SiO2/ITZO interface, leading to enhanced devices performance. This work provides a precise and efficient method to evaluate the quality of GOs in metal oxide TFTs.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0174250</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Density ; Grain boundaries ; LF noise ; Metal oxides ; Plasma enhanced chemical vapor deposition ; Semiconductor devices ; Silicon dioxide ; Stacks ; Thin film transistors ; Transistors</subject><ispartof>Applied physics letters, 2024-01, Vol.124 (2)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-2d83f82889a5dc0630bfbcd7c4c247507fc6a2bbd4185baba29fab5b7e54468d3</cites><orcidid>0000-0002-0317-7253 ; 0000-0002-8281-7246 ; 0000-0002-7247-8420 ; 0000-0002-5570-9100 ; 0000-0002-3428-3120 ; 0000-0002-7289-2103 ; 0000-0002-2820-9530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0174250$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Chen, Yayi</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Deng, Sunbin</creatorcontrib><creatorcontrib>Chen, Rongsheng</creatorcontrib><creatorcontrib>Zhang, Jianfeng</creatorcontrib><creatorcontrib>Kwok, Hoi-Sing</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><title>Low-frequency noise in InSnZnO thin film transistors with high-quality SiO2 gate oxide stacks</title><title>Applied physics letters</title><description>Low-frequency noise (LFN) in InSnZnO (ITZO) thin-film-transistors (TFT) with high-quality SiO2 gate oxide (GO) stacks is studied. This stack is fabricated by the plasma enhanced chemical vapor deposition (PECVD) and comprises two single layers. One layer is deposited by a SiH4 source (SiH4–SiO2), and the other uses a tetraethyl-orthosilicate precursor (TEOS-SiO2). The drain current noise power spectral densities follow the typical 1/f rule, and the main origin of LFN changes with the variation of drain current intensities. At low drain current intensities, LFN is affected by grain boundaries in the channel. As the drain current intensities increase, LFN originates from the carrier number fluctuations in devices with single TEOS-SiO2 GOs and from the carrier number with correlated mobility fluctuations in devices with SiO2 stacks GOs. At extremely high drain current intensities, the contact noise acts as a significant source of LFN in devices with SiO2 GO stacks. According to the carrier number with correlated mobility fluctuation ( Δ N − Δ μ) model, the devices with optimal stacks GOs exhibit a relatively low trap density near the ITZO/SiO2 interface. Additionally, these devices have a lower border trap density in GOs compared to those with single compositions. It demonstrates that high-quality SiO2 stacks reduce traps near the SiO2/ITZO interface, leading to enhanced devices performance. This work provides a precise and efficient method to evaluate the quality of GOs in metal oxide TFTs.</description><subject>Applied physics</subject><subject>Density</subject><subject>Grain boundaries</subject><subject>LF noise</subject><subject>Metal oxides</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Stacks</subject><subject>Thin film transistors</subject><subject>Transistors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAlUJqkpnMZJZS_CgUuqhuBBmSTNJJbZM2San990batavHhcN9nAvALcEjgqvikY0wqUvK8BkYEFzXqCCEn4MBxrhAVcPIJbiKcZkjo0UxAF9Tv0cm6O1OO3WAztuooXVw4ubu081g6nMwdrWGKQgXbUw-RLi3qYe9XfRouxMrmw5wbmcULkTS0P_YTsOYhPqO1-DCiFXUN6c7BB8vz-_jNzSdvU7GT1OkKKMJ0Y4XhlPOG8E6lTWwNFJ1tSoVLWuGa6MqQaXsSsKZFFLQxgjJZK1ZWVa8K4bg7ti7CT6bxNQu_S64_LKlDSFZlZc0U_dHSgUfY9Cm3QS7FuHQEtz-rdey9rReZh-ObFQ2iWS9-wf-BdjlbyY</recordid><startdate>20240108</startdate><enddate>20240108</enddate><creator>Chen, Yayi</creator><creator>Liu, Yuan</creator><creator>Deng, Sunbin</creator><creator>Chen, Rongsheng</creator><creator>Zhang, Jianfeng</creator><creator>Kwok, Hoi-Sing</creator><creator>Zhong, Wei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0317-7253</orcidid><orcidid>https://orcid.org/0000-0002-8281-7246</orcidid><orcidid>https://orcid.org/0000-0002-7247-8420</orcidid><orcidid>https://orcid.org/0000-0002-5570-9100</orcidid><orcidid>https://orcid.org/0000-0002-3428-3120</orcidid><orcidid>https://orcid.org/0000-0002-7289-2103</orcidid><orcidid>https://orcid.org/0000-0002-2820-9530</orcidid></search><sort><creationdate>20240108</creationdate><title>Low-frequency noise in InSnZnO thin film transistors with high-quality SiO2 gate oxide stacks</title><author>Chen, Yayi ; Liu, Yuan ; Deng, Sunbin ; Chen, Rongsheng ; Zhang, Jianfeng ; Kwok, Hoi-Sing ; Zhong, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-2d83f82889a5dc0630bfbcd7c4c247507fc6a2bbd4185baba29fab5b7e54468d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied physics</topic><topic>Density</topic><topic>Grain boundaries</topic><topic>LF noise</topic><topic>Metal oxides</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Stacks</topic><topic>Thin film transistors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yayi</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Deng, Sunbin</creatorcontrib><creatorcontrib>Chen, Rongsheng</creatorcontrib><creatorcontrib>Zhang, Jianfeng</creatorcontrib><creatorcontrib>Kwok, Hoi-Sing</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yayi</au><au>Liu, Yuan</au><au>Deng, Sunbin</au><au>Chen, Rongsheng</au><au>Zhang, Jianfeng</au><au>Kwok, Hoi-Sing</au><au>Zhong, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-frequency noise in InSnZnO thin film transistors with high-quality SiO2 gate oxide stacks</atitle><jtitle>Applied physics letters</jtitle><date>2024-01-08</date><risdate>2024</risdate><volume>124</volume><issue>2</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Low-frequency noise (LFN) in InSnZnO (ITZO) thin-film-transistors (TFT) with high-quality SiO2 gate oxide (GO) stacks is studied. This stack is fabricated by the plasma enhanced chemical vapor deposition (PECVD) and comprises two single layers. One layer is deposited by a SiH4 source (SiH4–SiO2), and the other uses a tetraethyl-orthosilicate precursor (TEOS-SiO2). The drain current noise power spectral densities follow the typical 1/f rule, and the main origin of LFN changes with the variation of drain current intensities. At low drain current intensities, LFN is affected by grain boundaries in the channel. As the drain current intensities increase, LFN originates from the carrier number fluctuations in devices with single TEOS-SiO2 GOs and from the carrier number with correlated mobility fluctuations in devices with SiO2 stacks GOs. At extremely high drain current intensities, the contact noise acts as a significant source of LFN in devices with SiO2 GO stacks. According to the carrier number with correlated mobility fluctuation ( Δ N − Δ μ) model, the devices with optimal stacks GOs exhibit a relatively low trap density near the ITZO/SiO2 interface. Additionally, these devices have a lower border trap density in GOs compared to those with single compositions. It demonstrates that high-quality SiO2 stacks reduce traps near the SiO2/ITZO interface, leading to enhanced devices performance. This work provides a precise and efficient method to evaluate the quality of GOs in metal oxide TFTs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0174250</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0317-7253</orcidid><orcidid>https://orcid.org/0000-0002-8281-7246</orcidid><orcidid>https://orcid.org/0000-0002-7247-8420</orcidid><orcidid>https://orcid.org/0000-0002-5570-9100</orcidid><orcidid>https://orcid.org/0000-0002-3428-3120</orcidid><orcidid>https://orcid.org/0000-0002-7289-2103</orcidid><orcidid>https://orcid.org/0000-0002-2820-9530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-01, Vol.124 (2)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2911523842
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Density
Grain boundaries
LF noise
Metal oxides
Plasma enhanced chemical vapor deposition
Semiconductor devices
Silicon dioxide
Stacks
Thin film transistors
Transistors
title Low-frequency noise in InSnZnO thin film transistors with high-quality SiO2 gate oxide stacks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-frequency%20noise%20in%20InSnZnO%20thin%20film%20transistors%20with%20high-quality%20SiO2%20gate%20oxide%20stacks&rft.jtitle=Applied%20physics%20letters&rft.au=Chen,%20Yayi&rft.date=2024-01-08&rft.volume=124&rft.issue=2&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0174250&rft_dat=%3Cproquest_cross%3E2911523842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-2d83f82889a5dc0630bfbcd7c4c247507fc6a2bbd4185baba29fab5b7e54468d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2911523842&rft_id=info:pmid/&rfr_iscdi=true