Loading…
Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan
A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a targ...
Saved in:
Published in: | Earthquake engineering & structural dynamics 2024-02, Vol.53 (2), p.968-991 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323 |
container_end_page | 991 |
container_issue | 2 |
container_start_page | 968 |
container_title | Earthquake engineering & structural dynamics |
container_volume | 53 |
creator | Huang, Jyun‐Yan Chao, Shu‐Hsien Lin, Che‐Min Chou, Chung‐Che Loh, Chin‐Hsiung Wu, Chiun‐Lin |
description | A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site. |
doi_str_mv | 10.1002/eqe.4055 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911758834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911758834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323</originalsourceid><addsrcrecordid>eNp1kN9KwzAUh4MoOKfgIwS88aYzaZM2uZQx_8BAxHkd0vREM7q0S7qN3fkIPqNPYrd669WB8_vO78CH0DUlE0pIegdrmDDC-QkaUSLzRArGT9GIECkSIVhxji5iXBJCspwUI7R9cx38fH3HFoyzzuAAsW18BHzYdEHjCrZQNy1UuNxj00euguD8B_agQ39p9abu8KrpXOPxznWf2Do_lA5RdKtNrY-x83ih3U77S3RmdR3h6m-O0fvDbDF9SuYvj8_T-3liUs54Im0FWV6WVQGCmKKkgpOUWqAisxK4Ka0Bm-fSSF2WkjJRVZJpQXJgLOVZmo3RzdDbhma9gdipZbMJvn-pUklpwYXIWE_dDpQJTYwBrGqDW-mwV5Sog1XVW1UHqz2aDOjO1bD_l1Oz19mR_wXfWH45</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911758834</pqid></control><display><type>article</type><title>Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Huang, Jyun‐Yan ; Chao, Shu‐Hsien ; Lin, Che‐Min ; Chou, Chung‐Che ; Loh, Chin‐Hsiung ; Wu, Chiun‐Lin</creator><creatorcontrib>Huang, Jyun‐Yan ; Chao, Shu‐Hsien ; Lin, Che‐Min ; Chou, Chung‐Che ; Loh, Chin‐Hsiung ; Wu, Chiun‐Lin</creatorcontrib><description>A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site.</description><identifier>ISSN: 0098-8847</identifier><identifier>EISSN: 1096-9845</identifier><identifier>DOI: 10.1002/eqe.4055</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Empirical equations ; Ground motion ; ground motion prediction equation ; ground motion simulation ; horizontal‐to‐vertical Fourier spectral ratios ; Motion simulation ; Movement ; near‐fault pulse‐like ground motion ; Probability theory ; Response spectra ; Rocks ; Simulation ; site‐specific effect ; Stochasticity ; Transfer functions</subject><ispartof>Earthquake engineering & structural dynamics, 2024-02, Vol.53 (2), p.968-991</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323</cites><orcidid>0000-0002-9014-1303 ; 0000-0002-2104-5625 ; 0000-0003-1007-5041 ; 0000-0002-6791-3790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Jyun‐Yan</creatorcontrib><creatorcontrib>Chao, Shu‐Hsien</creatorcontrib><creatorcontrib>Lin, Che‐Min</creatorcontrib><creatorcontrib>Chou, Chung‐Che</creatorcontrib><creatorcontrib>Loh, Chin‐Hsiung</creatorcontrib><creatorcontrib>Wu, Chiun‐Lin</creatorcontrib><title>Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan</title><title>Earthquake engineering & structural dynamics</title><description>A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site.</description><subject>Empirical equations</subject><subject>Ground motion</subject><subject>ground motion prediction equation</subject><subject>ground motion simulation</subject><subject>horizontal‐to‐vertical Fourier spectral ratios</subject><subject>Motion simulation</subject><subject>Movement</subject><subject>near‐fault pulse‐like ground motion</subject><subject>Probability theory</subject><subject>Response spectra</subject><subject>Rocks</subject><subject>Simulation</subject><subject>site‐specific effect</subject><subject>Stochasticity</subject><subject>Transfer functions</subject><issn>0098-8847</issn><issn>1096-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kN9KwzAUh4MoOKfgIwS88aYzaZM2uZQx_8BAxHkd0vREM7q0S7qN3fkIPqNPYrd669WB8_vO78CH0DUlE0pIegdrmDDC-QkaUSLzRArGT9GIECkSIVhxji5iXBJCspwUI7R9cx38fH3HFoyzzuAAsW18BHzYdEHjCrZQNy1UuNxj00euguD8B_agQ39p9abu8KrpXOPxznWf2Do_lA5RdKtNrY-x83ih3U77S3RmdR3h6m-O0fvDbDF9SuYvj8_T-3liUs54Im0FWV6WVQGCmKKkgpOUWqAisxK4Ka0Bm-fSSF2WkjJRVZJpQXJgLOVZmo3RzdDbhma9gdipZbMJvn-pUklpwYXIWE_dDpQJTYwBrGqDW-mwV5Sog1XVW1UHqz2aDOjO1bD_l1Oz19mR_wXfWH45</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Huang, Jyun‐Yan</creator><creator>Chao, Shu‐Hsien</creator><creator>Lin, Che‐Min</creator><creator>Chou, Chung‐Che</creator><creator>Loh, Chin‐Hsiung</creator><creator>Wu, Chiun‐Lin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9014-1303</orcidid><orcidid>https://orcid.org/0000-0002-2104-5625</orcidid><orcidid>https://orcid.org/0000-0003-1007-5041</orcidid><orcidid>https://orcid.org/0000-0002-6791-3790</orcidid></search><sort><creationdate>202402</creationdate><title>Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan</title><author>Huang, Jyun‐Yan ; Chao, Shu‐Hsien ; Lin, Che‐Min ; Chou, Chung‐Che ; Loh, Chin‐Hsiung ; Wu, Chiun‐Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Empirical equations</topic><topic>Ground motion</topic><topic>ground motion prediction equation</topic><topic>ground motion simulation</topic><topic>horizontal‐to‐vertical Fourier spectral ratios</topic><topic>Motion simulation</topic><topic>Movement</topic><topic>near‐fault pulse‐like ground motion</topic><topic>Probability theory</topic><topic>Response spectra</topic><topic>Rocks</topic><topic>Simulation</topic><topic>site‐specific effect</topic><topic>Stochasticity</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jyun‐Yan</creatorcontrib><creatorcontrib>Chao, Shu‐Hsien</creatorcontrib><creatorcontrib>Lin, Che‐Min</creatorcontrib><creatorcontrib>Chou, Chung‐Che</creatorcontrib><creatorcontrib>Loh, Chin‐Hsiung</creatorcontrib><creatorcontrib>Wu, Chiun‐Lin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Earthquake engineering & structural dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jyun‐Yan</au><au>Chao, Shu‐Hsien</au><au>Lin, Che‐Min</au><au>Chou, Chung‐Che</au><au>Loh, Chin‐Hsiung</au><au>Wu, Chiun‐Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan</atitle><jtitle>Earthquake engineering & structural dynamics</jtitle><date>2024-02</date><risdate>2024</risdate><volume>53</volume><issue>2</issue><spage>968</spage><epage>991</epage><pages>968-991</pages><issn>0098-8847</issn><eissn>1096-9845</eissn><abstract>A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eqe.4055</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9014-1303</orcidid><orcidid>https://orcid.org/0000-0002-2104-5625</orcidid><orcidid>https://orcid.org/0000-0003-1007-5041</orcidid><orcidid>https://orcid.org/0000-0002-6791-3790</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-8847 |
ispartof | Earthquake engineering & structural dynamics, 2024-02, Vol.53 (2), p.968-991 |
issn | 0098-8847 1096-9845 |
language | eng |
recordid | cdi_proquest_journals_2911758834 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Empirical equations Ground motion ground motion prediction equation ground motion simulation horizontal‐to‐vertical Fourier spectral ratios Motion simulation Movement near‐fault pulse‐like ground motion Probability theory Response spectra Rocks Simulation site‐specific effect Stochasticity Transfer functions |
title | Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%E2%80%90specific%20response%20spectra%20developed%20by%20considering%20near%E2%80%90fault%20motion%20with%20finite%E2%80%90fault%20simulation%20in%20Taiwan&rft.jtitle=Earthquake%20engineering%20&%20structural%20dynamics&rft.au=Huang,%20Jyun%E2%80%90Yan&rft.date=2024-02&rft.volume=53&rft.issue=2&rft.spage=968&rft.epage=991&rft.pages=968-991&rft.issn=0098-8847&rft.eissn=1096-9845&rft_id=info:doi/10.1002/eqe.4055&rft_dat=%3Cproquest_cross%3E2911758834%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2911758834&rft_id=info:pmid/&rfr_iscdi=true |