Loading…

Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan

A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a targ...

Full description

Saved in:
Bibliographic Details
Published in:Earthquake engineering & structural dynamics 2024-02, Vol.53 (2), p.968-991
Main Authors: Huang, Jyun‐Yan, Chao, Shu‐Hsien, Lin, Che‐Min, Chou, Chung‐Che, Loh, Chin‐Hsiung, Wu, Chiun‐Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323
container_end_page 991
container_issue 2
container_start_page 968
container_title Earthquake engineering & structural dynamics
container_volume 53
creator Huang, Jyun‐Yan
Chao, Shu‐Hsien
Lin, Che‐Min
Chou, Chung‐Che
Loh, Chin‐Hsiung
Wu, Chiun‐Lin
description A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site.
doi_str_mv 10.1002/eqe.4055
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911758834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911758834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323</originalsourceid><addsrcrecordid>eNp1kN9KwzAUh4MoOKfgIwS88aYzaZM2uZQx_8BAxHkd0vREM7q0S7qN3fkIPqNPYrd669WB8_vO78CH0DUlE0pIegdrmDDC-QkaUSLzRArGT9GIECkSIVhxji5iXBJCspwUI7R9cx38fH3HFoyzzuAAsW18BHzYdEHjCrZQNy1UuNxj00euguD8B_agQ39p9abu8KrpXOPxznWf2Do_lA5RdKtNrY-x83ih3U77S3RmdR3h6m-O0fvDbDF9SuYvj8_T-3liUs54Im0FWV6WVQGCmKKkgpOUWqAisxK4Ka0Bm-fSSF2WkjJRVZJpQXJgLOVZmo3RzdDbhma9gdipZbMJvn-pUklpwYXIWE_dDpQJTYwBrGqDW-mwV5Sog1XVW1UHqz2aDOjO1bD_l1Oz19mR_wXfWH45</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911758834</pqid></control><display><type>article</type><title>Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Huang, Jyun‐Yan ; Chao, Shu‐Hsien ; Lin, Che‐Min ; Chou, Chung‐Che ; Loh, Chin‐Hsiung ; Wu, Chiun‐Lin</creator><creatorcontrib>Huang, Jyun‐Yan ; Chao, Shu‐Hsien ; Lin, Che‐Min ; Chou, Chung‐Che ; Loh, Chin‐Hsiung ; Wu, Chiun‐Lin</creatorcontrib><description>A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site.</description><identifier>ISSN: 0098-8847</identifier><identifier>EISSN: 1096-9845</identifier><identifier>DOI: 10.1002/eqe.4055</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Empirical equations ; Ground motion ; ground motion prediction equation ; ground motion simulation ; horizontal‐to‐vertical Fourier spectral ratios ; Motion simulation ; Movement ; near‐fault pulse‐like ground motion ; Probability theory ; Response spectra ; Rocks ; Simulation ; site‐specific effect ; Stochasticity ; Transfer functions</subject><ispartof>Earthquake engineering &amp; structural dynamics, 2024-02, Vol.53 (2), p.968-991</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323</cites><orcidid>0000-0002-9014-1303 ; 0000-0002-2104-5625 ; 0000-0003-1007-5041 ; 0000-0002-6791-3790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Jyun‐Yan</creatorcontrib><creatorcontrib>Chao, Shu‐Hsien</creatorcontrib><creatorcontrib>Lin, Che‐Min</creatorcontrib><creatorcontrib>Chou, Chung‐Che</creatorcontrib><creatorcontrib>Loh, Chin‐Hsiung</creatorcontrib><creatorcontrib>Wu, Chiun‐Lin</creatorcontrib><title>Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan</title><title>Earthquake engineering &amp; structural dynamics</title><description>A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site.</description><subject>Empirical equations</subject><subject>Ground motion</subject><subject>ground motion prediction equation</subject><subject>ground motion simulation</subject><subject>horizontal‐to‐vertical Fourier spectral ratios</subject><subject>Motion simulation</subject><subject>Movement</subject><subject>near‐fault pulse‐like ground motion</subject><subject>Probability theory</subject><subject>Response spectra</subject><subject>Rocks</subject><subject>Simulation</subject><subject>site‐specific effect</subject><subject>Stochasticity</subject><subject>Transfer functions</subject><issn>0098-8847</issn><issn>1096-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kN9KwzAUh4MoOKfgIwS88aYzaZM2uZQx_8BAxHkd0vREM7q0S7qN3fkIPqNPYrd669WB8_vO78CH0DUlE0pIegdrmDDC-QkaUSLzRArGT9GIECkSIVhxji5iXBJCspwUI7R9cx38fH3HFoyzzuAAsW18BHzYdEHjCrZQNy1UuNxj00euguD8B_agQ39p9abu8KrpXOPxznWf2Do_lA5RdKtNrY-x83ih3U77S3RmdR3h6m-O0fvDbDF9SuYvj8_T-3liUs54Im0FWV6WVQGCmKKkgpOUWqAisxK4Ka0Bm-fSSF2WkjJRVZJpQXJgLOVZmo3RzdDbhma9gdipZbMJvn-pUklpwYXIWE_dDpQJTYwBrGqDW-mwV5Sog1XVW1UHqz2aDOjO1bD_l1Oz19mR_wXfWH45</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Huang, Jyun‐Yan</creator><creator>Chao, Shu‐Hsien</creator><creator>Lin, Che‐Min</creator><creator>Chou, Chung‐Che</creator><creator>Loh, Chin‐Hsiung</creator><creator>Wu, Chiun‐Lin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9014-1303</orcidid><orcidid>https://orcid.org/0000-0002-2104-5625</orcidid><orcidid>https://orcid.org/0000-0003-1007-5041</orcidid><orcidid>https://orcid.org/0000-0002-6791-3790</orcidid></search><sort><creationdate>202402</creationdate><title>Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan</title><author>Huang, Jyun‐Yan ; Chao, Shu‐Hsien ; Lin, Che‐Min ; Chou, Chung‐Che ; Loh, Chin‐Hsiung ; Wu, Chiun‐Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Empirical equations</topic><topic>Ground motion</topic><topic>ground motion prediction equation</topic><topic>ground motion simulation</topic><topic>horizontal‐to‐vertical Fourier spectral ratios</topic><topic>Motion simulation</topic><topic>Movement</topic><topic>near‐fault pulse‐like ground motion</topic><topic>Probability theory</topic><topic>Response spectra</topic><topic>Rocks</topic><topic>Simulation</topic><topic>site‐specific effect</topic><topic>Stochasticity</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jyun‐Yan</creatorcontrib><creatorcontrib>Chao, Shu‐Hsien</creatorcontrib><creatorcontrib>Lin, Che‐Min</creatorcontrib><creatorcontrib>Chou, Chung‐Che</creatorcontrib><creatorcontrib>Loh, Chin‐Hsiung</creatorcontrib><creatorcontrib>Wu, Chiun‐Lin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Earthquake engineering &amp; structural dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jyun‐Yan</au><au>Chao, Shu‐Hsien</au><au>Lin, Che‐Min</au><au>Chou, Chung‐Che</au><au>Loh, Chin‐Hsiung</au><au>Wu, Chiun‐Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan</atitle><jtitle>Earthquake engineering &amp; structural dynamics</jtitle><date>2024-02</date><risdate>2024</risdate><volume>53</volume><issue>2</issue><spage>968</spage><epage>991</epage><pages>968-991</pages><issn>0098-8847</issn><eissn>1096-9845</eissn><abstract>A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eqe.4055</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9014-1303</orcidid><orcidid>https://orcid.org/0000-0002-2104-5625</orcidid><orcidid>https://orcid.org/0000-0003-1007-5041</orcidid><orcidid>https://orcid.org/0000-0002-6791-3790</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-8847
ispartof Earthquake engineering & structural dynamics, 2024-02, Vol.53 (2), p.968-991
issn 0098-8847
1096-9845
language eng
recordid cdi_proquest_journals_2911758834
source Wiley-Blackwell Read & Publish Collection
subjects Empirical equations
Ground motion
ground motion prediction equation
ground motion simulation
horizontal‐to‐vertical Fourier spectral ratios
Motion simulation
Movement
near‐fault pulse‐like ground motion
Probability theory
Response spectra
Rocks
Simulation
site‐specific effect
Stochasticity
Transfer functions
title Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%E2%80%90specific%20response%20spectra%20developed%20by%20considering%20near%E2%80%90fault%20motion%20with%20finite%E2%80%90fault%20simulation%20in%20Taiwan&rft.jtitle=Earthquake%20engineering%20&%20structural%20dynamics&rft.au=Huang,%20Jyun%E2%80%90Yan&rft.date=2024-02&rft.volume=53&rft.issue=2&rft.spage=968&rft.epage=991&rft.pages=968-991&rft.issn=0098-8847&rft.eissn=1096-9845&rft_id=info:doi/10.1002/eqe.4055&rft_dat=%3Cproquest_cross%3E2911758834%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2545-9fde36bbd7e80c7b185021fe183f9e5cbfcef669c9abb9148dd94a806e4425323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2911758834&rft_id=info:pmid/&rfr_iscdi=true