Loading…

A nano-scale arithmetic and logic unit using a reversible logic and quantum-dots

The arithmetic and logic unit (ALU) is a key element of complex circuits and an intrinsic part of the most widely recognized complex circuits in digital signal processing. Also, recent attention has been brought to reversible logic and quantum-dot cellular automata (QCA) because of their intrinsic c...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing 2024, Vol.80 (1), p.395-412
Main Authors: Navimipour, Nima Jafari, Ahmadpour, Seyed-Sajad, Yalcin, Senay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f359a262f2284664c211e3cc4cd355f887a263d7f74f5a7082308fa6250480aa3
cites cdi_FETCH-LOGICAL-c319t-f359a262f2284664c211e3cc4cd355f887a263d7f74f5a7082308fa6250480aa3
container_end_page 412
container_issue 1
container_start_page 395
container_title The Journal of supercomputing
container_volume 80
creator Navimipour, Nima Jafari
Ahmadpour, Seyed-Sajad
Yalcin, Senay
description The arithmetic and logic unit (ALU) is a key element of complex circuits and an intrinsic part of the most widely recognized complex circuits in digital signal processing. Also, recent attention has been brought to reversible logic and quantum-dot cellular automata (QCA) because of their intrinsic capacity to decrease energy dissipation, which is a crucial need for low-power digital circuits. QCA will be the preferred technology for developing the subsequent generation of digital systems. These technologies played a substantial role in the design of the ALU for operations such as multiplication, subtraction, and division. In developing reversible logic and QCA technologies, the ALU is frequently studied as a central unit. Implementing an efficient ALU with low quantum cost and a small number of cells based on an efficient reversible block can solve all previous issues. Therefore, this research constructs a Feynman gate, a Fredkin gate, and full adder circuits using reversible logic and QCA technology. Using all of the specified circuits, a 20-operation ALU is constructed. The power consumption of the proposed ALU under various energy ranges demonstrated significant improvements over earlier designs.
doi_str_mv 10.1007/s11227-023-05491-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911961656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911961656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f359a262f2284664c211e3cc4cd355f887a263d7f74f5a7082308fa6250480aa3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_kz2WolYo6EHPIWaTuqXNtklW6rc3dQVvnmaG93szzAPgmuBbgrG6y4RQqhCmDGHBG4IOJ2BChKoj1_wUTHBDMdKC03NwkfMaY8yZYhPwMoPRxh5lZzce2tSVj60vnYM2tnDTr2o3xK7AIXdxBS1M_tOn3L1XeFSP3H6wsQxb1PYlX4KzYDfZX_3WKXh7uH-dL9Dy-fFpPlsix0hTUGCisVTSQKnmUnJHCfHMOe5aJkTQWlWVtSooHoRVWFOGdbCSivoQtpZNwc24d5f6_eBzMet-SLGeNLQhpJFEClkpOlIu9TknH8wudVubvgzB5picGZMzNTnzk5w5VBMbTbnCceXT3-p_XN9Or3BZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911961656</pqid></control><display><type>article</type><title>A nano-scale arithmetic and logic unit using a reversible logic and quantum-dots</title><source>Springer Nature</source><creator>Navimipour, Nima Jafari ; Ahmadpour, Seyed-Sajad ; Yalcin, Senay</creator><creatorcontrib>Navimipour, Nima Jafari ; Ahmadpour, Seyed-Sajad ; Yalcin, Senay</creatorcontrib><description>The arithmetic and logic unit (ALU) is a key element of complex circuits and an intrinsic part of the most widely recognized complex circuits in digital signal processing. Also, recent attention has been brought to reversible logic and quantum-dot cellular automata (QCA) because of their intrinsic capacity to decrease energy dissipation, which is a crucial need for low-power digital circuits. QCA will be the preferred technology for developing the subsequent generation of digital systems. These technologies played a substantial role in the design of the ALU for operations such as multiplication, subtraction, and division. In developing reversible logic and QCA technologies, the ALU is frequently studied as a central unit. Implementing an efficient ALU with low quantum cost and a small number of cells based on an efficient reversible block can solve all previous issues. Therefore, this research constructs a Feynman gate, a Fredkin gate, and full adder circuits using reversible logic and QCA technology. Using all of the specified circuits, a 20-operation ALU is constructed. The power consumption of the proposed ALU under various energy ranges demonstrated significant improvements over earlier designs.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-023-05491-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arithmetic and logic units ; Cellular automata ; Compilers ; Computer Science ; Digital electronics ; Digital signal processing ; Digital systems ; Energy dissipation ; Interpreters ; Logic ; Multiplication ; Power consumption ; Processor Architectures ; Programming Languages ; Quantum dots ; Subtraction</subject><ispartof>The Journal of supercomputing, 2024, Vol.80 (1), p.395-412</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f359a262f2284664c211e3cc4cd355f887a263d7f74f5a7082308fa6250480aa3</citedby><cites>FETCH-LOGICAL-c319t-f359a262f2284664c211e3cc4cd355f887a263d7f74f5a7082308fa6250480aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Navimipour, Nima Jafari</creatorcontrib><creatorcontrib>Ahmadpour, Seyed-Sajad</creatorcontrib><creatorcontrib>Yalcin, Senay</creatorcontrib><title>A nano-scale arithmetic and logic unit using a reversible logic and quantum-dots</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>The arithmetic and logic unit (ALU) is a key element of complex circuits and an intrinsic part of the most widely recognized complex circuits in digital signal processing. Also, recent attention has been brought to reversible logic and quantum-dot cellular automata (QCA) because of their intrinsic capacity to decrease energy dissipation, which is a crucial need for low-power digital circuits. QCA will be the preferred technology for developing the subsequent generation of digital systems. These technologies played a substantial role in the design of the ALU for operations such as multiplication, subtraction, and division. In developing reversible logic and QCA technologies, the ALU is frequently studied as a central unit. Implementing an efficient ALU with low quantum cost and a small number of cells based on an efficient reversible block can solve all previous issues. Therefore, this research constructs a Feynman gate, a Fredkin gate, and full adder circuits using reversible logic and QCA technology. Using all of the specified circuits, a 20-operation ALU is constructed. The power consumption of the proposed ALU under various energy ranges demonstrated significant improvements over earlier designs.</description><subject>Arithmetic and logic units</subject><subject>Cellular automata</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Digital electronics</subject><subject>Digital signal processing</subject><subject>Digital systems</subject><subject>Energy dissipation</subject><subject>Interpreters</subject><subject>Logic</subject><subject>Multiplication</subject><subject>Power consumption</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Quantum dots</subject><subject>Subtraction</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_kz2WolYo6EHPIWaTuqXNtklW6rc3dQVvnmaG93szzAPgmuBbgrG6y4RQqhCmDGHBG4IOJ2BChKoj1_wUTHBDMdKC03NwkfMaY8yZYhPwMoPRxh5lZzce2tSVj60vnYM2tnDTr2o3xK7AIXdxBS1M_tOn3L1XeFSP3H6wsQxb1PYlX4KzYDfZX_3WKXh7uH-dL9Dy-fFpPlsix0hTUGCisVTSQKnmUnJHCfHMOe5aJkTQWlWVtSooHoRVWFOGdbCSivoQtpZNwc24d5f6_eBzMet-SLGeNLQhpJFEClkpOlIu9TknH8wudVubvgzB5picGZMzNTnzk5w5VBMbTbnCceXT3-p_XN9Or3BZ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Navimipour, Nima Jafari</creator><creator>Ahmadpour, Seyed-Sajad</creator><creator>Yalcin, Senay</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>A nano-scale arithmetic and logic unit using a reversible logic and quantum-dots</title><author>Navimipour, Nima Jafari ; Ahmadpour, Seyed-Sajad ; Yalcin, Senay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f359a262f2284664c211e3cc4cd355f887a263d7f74f5a7082308fa6250480aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arithmetic and logic units</topic><topic>Cellular automata</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Digital electronics</topic><topic>Digital signal processing</topic><topic>Digital systems</topic><topic>Energy dissipation</topic><topic>Interpreters</topic><topic>Logic</topic><topic>Multiplication</topic><topic>Power consumption</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Quantum dots</topic><topic>Subtraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navimipour, Nima Jafari</creatorcontrib><creatorcontrib>Ahmadpour, Seyed-Sajad</creatorcontrib><creatorcontrib>Yalcin, Senay</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navimipour, Nima Jafari</au><au>Ahmadpour, Seyed-Sajad</au><au>Yalcin, Senay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nano-scale arithmetic and logic unit using a reversible logic and quantum-dots</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024</date><risdate>2024</risdate><volume>80</volume><issue>1</issue><spage>395</spage><epage>412</epage><pages>395-412</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>The arithmetic and logic unit (ALU) is a key element of complex circuits and an intrinsic part of the most widely recognized complex circuits in digital signal processing. Also, recent attention has been brought to reversible logic and quantum-dot cellular automata (QCA) because of their intrinsic capacity to decrease energy dissipation, which is a crucial need for low-power digital circuits. QCA will be the preferred technology for developing the subsequent generation of digital systems. These technologies played a substantial role in the design of the ALU for operations such as multiplication, subtraction, and division. In developing reversible logic and QCA technologies, the ALU is frequently studied as a central unit. Implementing an efficient ALU with low quantum cost and a small number of cells based on an efficient reversible block can solve all previous issues. Therefore, this research constructs a Feynman gate, a Fredkin gate, and full adder circuits using reversible logic and QCA technology. Using all of the specified circuits, a 20-operation ALU is constructed. The power consumption of the proposed ALU under various energy ranges demonstrated significant improvements over earlier designs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-023-05491-x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2024, Vol.80 (1), p.395-412
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2911961656
source Springer Nature
subjects Arithmetic and logic units
Cellular automata
Compilers
Computer Science
Digital electronics
Digital signal processing
Digital systems
Energy dissipation
Interpreters
Logic
Multiplication
Power consumption
Processor Architectures
Programming Languages
Quantum dots
Subtraction
title A nano-scale arithmetic and logic unit using a reversible logic and quantum-dots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nano-scale%20arithmetic%20and%20logic%20unit%20using%20a%20reversible%20logic%20and%20quantum-dots&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Navimipour,%20Nima%20Jafari&rft.date=2024&rft.volume=80&rft.issue=1&rft.spage=395&rft.epage=412&rft.pages=395-412&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-023-05491-x&rft_dat=%3Cproquest_cross%3E2911961656%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f359a262f2284664c211e3cc4cd355f887a263d7f74f5a7082308fa6250480aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2911961656&rft_id=info:pmid/&rfr_iscdi=true