Loading…

Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0

Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language proces...

Full description

Saved in:
Bibliographic Details
Published in:Software, practice & experience practice & experience, 2024-02, Vol.54 (2), p.168-185
Main Authors: Munshi, Manushi, Gupta, Rajesh, Jadav, Nilesh Kumar, Polkowski, Zdzislaw, Tanwar, Sudeep, Alqahtani, Fayez, Said, Wael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233
cites cdi_FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233
container_end_page 185
container_issue 2
container_start_page 168
container_title Software, practice & experience
container_volume 54
creator Munshi, Manushi
Gupta, Rajesh
Jadav, Nilesh Kumar
Polkowski, Zdzislaw
Tanwar, Sudeep
Alqahtani, Fayez
Said, Wael
description Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%.
doi_str_mv 10.1002/spe.3264
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912153221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912153221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233</originalsourceid><addsrcrecordid>eNotkM1KxDAURoMoOI6CjxBw46Y1uUnTdCmDOsKACA64K2lz43Tsz5ikiDsfwWf0Sewwrr7N4TtwCLnkLOWMwU3YYSpAySMy46zIEwby9ZjMGBM6YUrKU3IWwpYxzjNQM7J-Hk0fx452pt40PdIWje-b_u33-6cyAS113nT4Ofh3GgdqMWId6WaCInWmaUePgTY9XaJp46Y2HqlM2Tk5caYNePG_c7K-v3tZLJPV08Pj4naV1JBlMbEWapcDQ4lWa2fRAs-d1lWuCp05yAqOlQKpciuUtoU1FpWwtiq0RAlCzMnV4Xfnh48RQyy3w-j7SVlCwYFnAoBP1PWBqv0QgkdX7nzTGf9Vclbuo5VTtHIfTfwBHeNgUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912153221</pqid></control><display><type>article</type><title>Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Munshi, Manushi ; Gupta, Rajesh ; Jadav, Nilesh Kumar ; Polkowski, Zdzislaw ; Tanwar, Sudeep ; Alqahtani, Fayez ; Said, Wael</creator><creatorcontrib>Munshi, Manushi ; Gupta, Rajesh ; Jadav, Nilesh Kumar ; Polkowski, Zdzislaw ; Tanwar, Sudeep ; Alqahtani, Fayez ; Said, Wael</creatorcontrib><description>Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.3264</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Algorithms ; Classifiers ; Health care ; Heart diseases ; Machine learning ; Natural language processing ; Quantum computing</subject><ispartof>Software, practice &amp; experience, 2024-02, Vol.54 (2), p.168-185</ispartof><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233</citedby><cites>FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233</cites><orcidid>0000-0002-1776-4651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Munshi, Manushi</creatorcontrib><creatorcontrib>Gupta, Rajesh</creatorcontrib><creatorcontrib>Jadav, Nilesh Kumar</creatorcontrib><creatorcontrib>Polkowski, Zdzislaw</creatorcontrib><creatorcontrib>Tanwar, Sudeep</creatorcontrib><creatorcontrib>Alqahtani, Fayez</creatorcontrib><creatorcontrib>Said, Wael</creatorcontrib><title>Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0</title><title>Software, practice &amp; experience</title><description>Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classifiers</subject><subject>Health care</subject><subject>Heart diseases</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Quantum computing</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAURoMoOI6CjxBw46Y1uUnTdCmDOsKACA64K2lz43Tsz5ikiDsfwWf0Sewwrr7N4TtwCLnkLOWMwU3YYSpAySMy46zIEwby9ZjMGBM6YUrKU3IWwpYxzjNQM7J-Hk0fx452pt40PdIWje-b_u33-6cyAS113nT4Ofh3GgdqMWId6WaCInWmaUePgTY9XaJp46Y2HqlM2Tk5caYNePG_c7K-v3tZLJPV08Pj4naV1JBlMbEWapcDQ4lWa2fRAs-d1lWuCp05yAqOlQKpciuUtoU1FpWwtiq0RAlCzMnV4Xfnh48RQyy3w-j7SVlCwYFnAoBP1PWBqv0QgkdX7nzTGf9Vclbuo5VTtHIfTfwBHeNgUw</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Munshi, Manushi</creator><creator>Gupta, Rajesh</creator><creator>Jadav, Nilesh Kumar</creator><creator>Polkowski, Zdzislaw</creator><creator>Tanwar, Sudeep</creator><creator>Alqahtani, Fayez</creator><creator>Said, Wael</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1776-4651</orcidid></search><sort><creationdate>202402</creationdate><title>Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0</title><author>Munshi, Manushi ; Gupta, Rajesh ; Jadav, Nilesh Kumar ; Polkowski, Zdzislaw ; Tanwar, Sudeep ; Alqahtani, Fayez ; Said, Wael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classifiers</topic><topic>Health care</topic><topic>Heart diseases</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Quantum computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munshi, Manushi</creatorcontrib><creatorcontrib>Gupta, Rajesh</creatorcontrib><creatorcontrib>Jadav, Nilesh Kumar</creatorcontrib><creatorcontrib>Polkowski, Zdzislaw</creatorcontrib><creatorcontrib>Tanwar, Sudeep</creatorcontrib><creatorcontrib>Alqahtani, Fayez</creatorcontrib><creatorcontrib>Said, Wael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Software, practice &amp; experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munshi, Manushi</au><au>Gupta, Rajesh</au><au>Jadav, Nilesh Kumar</au><au>Polkowski, Zdzislaw</au><au>Tanwar, Sudeep</au><au>Alqahtani, Fayez</au><au>Said, Wael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0</atitle><jtitle>Software, practice &amp; experience</jtitle><date>2024-02</date><risdate>2024</risdate><volume>54</volume><issue>2</issue><spage>168</spage><epage>185</epage><pages>168-185</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/spe.3264</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1776-4651</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-0644
ispartof Software, practice & experience, 2024-02, Vol.54 (2), p.168-185
issn 0038-0644
1097-024X
language eng
recordid cdi_proquest_journals_2912153221
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Accuracy
Algorithms
Classifiers
Health care
Heart diseases
Machine learning
Natural language processing
Quantum computing
title Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20machine%20learning%E2%80%90based%20framework%20to%20detect%20heart%20failures%20in%20Healthcare%204.0&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Munshi,%20Manushi&rft.date=2024-02&rft.volume=54&rft.issue=2&rft.spage=168&rft.epage=185&rft.pages=168-185&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.3264&rft_dat=%3Cproquest_cross%3E2912153221%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912153221&rft_id=info:pmid/&rfr_iscdi=true