Loading…
Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0
Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language proces...
Saved in:
Published in: | Software, practice & experience practice & experience, 2024-02, Vol.54 (2), p.168-185 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233 |
---|---|
cites | cdi_FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233 |
container_end_page | 185 |
container_issue | 2 |
container_start_page | 168 |
container_title | Software, practice & experience |
container_volume | 54 |
creator | Munshi, Manushi Gupta, Rajesh Jadav, Nilesh Kumar Polkowski, Zdzislaw Tanwar, Sudeep Alqahtani, Fayez Said, Wael |
description | Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%. |
doi_str_mv | 10.1002/spe.3264 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912153221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912153221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233</originalsourceid><addsrcrecordid>eNotkM1KxDAURoMoOI6CjxBw46Y1uUnTdCmDOsKACA64K2lz43Tsz5ikiDsfwWf0Sewwrr7N4TtwCLnkLOWMwU3YYSpAySMy46zIEwby9ZjMGBM6YUrKU3IWwpYxzjNQM7J-Hk0fx452pt40PdIWje-b_u33-6cyAS113nT4Ofh3GgdqMWId6WaCInWmaUePgTY9XaJp46Y2HqlM2Tk5caYNePG_c7K-v3tZLJPV08Pj4naV1JBlMbEWapcDQ4lWa2fRAs-d1lWuCp05yAqOlQKpciuUtoU1FpWwtiq0RAlCzMnV4Xfnh48RQyy3w-j7SVlCwYFnAoBP1PWBqv0QgkdX7nzTGf9Vclbuo5VTtHIfTfwBHeNgUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912153221</pqid></control><display><type>article</type><title>Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Munshi, Manushi ; Gupta, Rajesh ; Jadav, Nilesh Kumar ; Polkowski, Zdzislaw ; Tanwar, Sudeep ; Alqahtani, Fayez ; Said, Wael</creator><creatorcontrib>Munshi, Manushi ; Gupta, Rajesh ; Jadav, Nilesh Kumar ; Polkowski, Zdzislaw ; Tanwar, Sudeep ; Alqahtani, Fayez ; Said, Wael</creatorcontrib><description>Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.3264</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Algorithms ; Classifiers ; Health care ; Heart diseases ; Machine learning ; Natural language processing ; Quantum computing</subject><ispartof>Software, practice & experience, 2024-02, Vol.54 (2), p.168-185</ispartof><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233</citedby><cites>FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233</cites><orcidid>0000-0002-1776-4651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Munshi, Manushi</creatorcontrib><creatorcontrib>Gupta, Rajesh</creatorcontrib><creatorcontrib>Jadav, Nilesh Kumar</creatorcontrib><creatorcontrib>Polkowski, Zdzislaw</creatorcontrib><creatorcontrib>Tanwar, Sudeep</creatorcontrib><creatorcontrib>Alqahtani, Fayez</creatorcontrib><creatorcontrib>Said, Wael</creatorcontrib><title>Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0</title><title>Software, practice & experience</title><description>Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classifiers</subject><subject>Health care</subject><subject>Heart diseases</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Quantum computing</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAURoMoOI6CjxBw46Y1uUnTdCmDOsKACA64K2lz43Tsz5ikiDsfwWf0Sewwrr7N4TtwCLnkLOWMwU3YYSpAySMy46zIEwby9ZjMGBM6YUrKU3IWwpYxzjNQM7J-Hk0fx452pt40PdIWje-b_u33-6cyAS113nT4Ofh3GgdqMWId6WaCInWmaUePgTY9XaJp46Y2HqlM2Tk5caYNePG_c7K-v3tZLJPV08Pj4naV1JBlMbEWapcDQ4lWa2fRAs-d1lWuCp05yAqOlQKpciuUtoU1FpWwtiq0RAlCzMnV4Xfnh48RQyy3w-j7SVlCwYFnAoBP1PWBqv0QgkdX7nzTGf9Vclbuo5VTtHIfTfwBHeNgUw</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Munshi, Manushi</creator><creator>Gupta, Rajesh</creator><creator>Jadav, Nilesh Kumar</creator><creator>Polkowski, Zdzislaw</creator><creator>Tanwar, Sudeep</creator><creator>Alqahtani, Fayez</creator><creator>Said, Wael</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1776-4651</orcidid></search><sort><creationdate>202402</creationdate><title>Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0</title><author>Munshi, Manushi ; Gupta, Rajesh ; Jadav, Nilesh Kumar ; Polkowski, Zdzislaw ; Tanwar, Sudeep ; Alqahtani, Fayez ; Said, Wael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classifiers</topic><topic>Health care</topic><topic>Heart diseases</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Quantum computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munshi, Manushi</creatorcontrib><creatorcontrib>Gupta, Rajesh</creatorcontrib><creatorcontrib>Jadav, Nilesh Kumar</creatorcontrib><creatorcontrib>Polkowski, Zdzislaw</creatorcontrib><creatorcontrib>Tanwar, Sudeep</creatorcontrib><creatorcontrib>Alqahtani, Fayez</creatorcontrib><creatorcontrib>Said, Wael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Software, practice & experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munshi, Manushi</au><au>Gupta, Rajesh</au><au>Jadav, Nilesh Kumar</au><au>Polkowski, Zdzislaw</au><au>Tanwar, Sudeep</au><au>Alqahtani, Fayez</au><au>Said, Wael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0</atitle><jtitle>Software, practice & experience</jtitle><date>2024-02</date><risdate>2024</risdate><volume>54</volume><issue>2</issue><spage>168</spage><epage>185</epage><pages>168-185</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>Quantum machine learning (QML) is an emerging field that combines the power of quantum computing with machine learning (ML) techniques to solve complex problems. In recent years, QML algorithms have shown tremendous potential in various applications such as image recognition, natural language processing, health care, finance, and drug discovery. QML algorithms aim to reduce computation costs and solve complex problems beyond the scope of classical machine learning algorithms. In this article, we study the performance of two QML algorithms, that is, quantum support vector classifiers (QSVC) and variational quantum classifiers (VQC), for chronic heart disease prediction in Healthcare 4.0. The performance of the two classifiers is assessed using different evaluation metrics like accuracy, precision, recall, and F1 score. The authors concluded the superior performance of QSVC over VQC with an accuracy of 82%.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/spe.3264</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1776-4651</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0644 |
ispartof | Software, practice & experience, 2024-02, Vol.54 (2), p.168-185 |
issn | 0038-0644 1097-024X |
language | eng |
recordid | cdi_proquest_journals_2912153221 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Accuracy Algorithms Classifiers Health care Heart diseases Machine learning Natural language processing Quantum computing |
title | Quantum machine learning‐based framework to detect heart failures in Healthcare 4.0 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20machine%20learning%E2%80%90based%20framework%20to%20detect%20heart%20failures%20in%20Healthcare%204.0&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Munshi,%20Manushi&rft.date=2024-02&rft.volume=54&rft.issue=2&rft.spage=168&rft.epage=185&rft.pages=168-185&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.3264&rft_dat=%3Cproquest_cross%3E2912153221%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-dd2cf720e4ed88fded217f88b76985f2591eb62467d368d9dade63ddb984e4233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912153221&rft_id=info:pmid/&rfr_iscdi=true |