Loading…
Nonnegative Matrices and Their Structured Singular Values
In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix . The presented new results on the equivalence of st...
Saved in:
Published in: | Russian mathematics 2023-10, Vol.67 (10), p.30-38 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113 |
container_end_page | 38 |
container_issue | 10 |
container_start_page | 30 |
container_title | Russian mathematics |
container_volume | 67 |
creator | Rehman, M. Rasulov, T. Aminov, B. |
description | In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix
. The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of
is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of
, both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of
. |
doi_str_mv | 10.3103/S1066369X23100080 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912678392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912678392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113</originalsourceid><addsrcrecordid>eNp1UFtLwzAUDqLgnP4A3wo-V89Jmix5lOENpj50yt5Klp7WjtrOpBX892ZM8EF8OpfvBh9j5wiXAkFc5QhKCWVWPJ4AGg7YBI3IUo2wOox7hNMdfsxOQtgASMUzNWHmqe86qu3QfFLyaAffOAqJ7cpk-UaNT_LBj24YPZVJ3nT12FqfvNp2pHDKjirbBjr7mVP2cnuznN-ni-e7h_n1InVc6SHVBjOhJC-VM0haaxByHR-qKklzclZWRs5QrkmXwpRQCamAVxyckICIYsou9r5b33_E3KHY9KPvYmTBDXI108LwyMI9y_k-BE9VsfXNu_VfBUKxa6j401DU8L0mRG5Xk_91_l_0DeJ_Zho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912678392</pqid></control><display><type>article</type><title>Nonnegative Matrices and Their Structured Singular Values</title><source>Springer Link</source><creator>Rehman, M. ; Rasulov, T. ; Aminov, B.</creator><creatorcontrib>Rehman, M. ; Rasulov, T. ; Aminov, B.</creatorcontrib><description>In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix
. The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of
is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of
, both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of
.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X23100080</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Determinants ; Equivalence ; Mathematics ; Mathematics and Statistics ; Structured singular values</subject><ispartof>Russian mathematics, 2023-10, Vol.67 (10), p.30-38</ispartof><rights>Allerton Press, Inc. 2023. ISSN 1066-369X, Russian Mathematics, 2023, Vol. 67, No. 10, pp. 30–38. © Allerton Press, Inc., 2023. Russian Text © The Author(s), 2023, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, No. 10, pp. 1–10.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rehman, M.</creatorcontrib><creatorcontrib>Rasulov, T.</creatorcontrib><creatorcontrib>Aminov, B.</creatorcontrib><title>Nonnegative Matrices and Their Structured Singular Values</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix
. The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of
is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of
, both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of
.</description><subject>Determinants</subject><subject>Equivalence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Structured singular values</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UFtLwzAUDqLgnP4A3wo-V89Jmix5lOENpj50yt5Klp7WjtrOpBX892ZM8EF8OpfvBh9j5wiXAkFc5QhKCWVWPJ4AGg7YBI3IUo2wOox7hNMdfsxOQtgASMUzNWHmqe86qu3QfFLyaAffOAqJ7cpk-UaNT_LBj24YPZVJ3nT12FqfvNp2pHDKjirbBjr7mVP2cnuznN-ni-e7h_n1InVc6SHVBjOhJC-VM0haaxByHR-qKklzclZWRs5QrkmXwpRQCamAVxyckICIYsou9r5b33_E3KHY9KPvYmTBDXI108LwyMI9y_k-BE9VsfXNu_VfBUKxa6j401DU8L0mRG5Xk_91_l_0DeJ_Zho</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Rehman, M.</creator><creator>Rasulov, T.</creator><creator>Aminov, B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Nonnegative Matrices and Their Structured Singular Values</title><author>Rehman, M. ; Rasulov, T. ; Aminov, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Determinants</topic><topic>Equivalence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Structured singular values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, M.</creatorcontrib><creatorcontrib>Rasulov, T.</creatorcontrib><creatorcontrib>Aminov, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, M.</au><au>Rasulov, T.</au><au>Aminov, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonnegative Matrices and Their Structured Singular Values</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>67</volume><issue>10</issue><spage>30</spage><epage>38</epage><pages>30-38</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix
. The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of
is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of
, both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of
.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1066369X23100080</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-369X |
ispartof | Russian mathematics, 2023-10, Vol.67 (10), p.30-38 |
issn | 1066-369X 1934-810X |
language | eng |
recordid | cdi_proquest_journals_2912678392 |
source | Springer Link |
subjects | Determinants Equivalence Mathematics Mathematics and Statistics Structured singular values |
title | Nonnegative Matrices and Their Structured Singular Values |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonnegative%20Matrices%20and%20Their%20Structured%20Singular%20Values&rft.jtitle=Russian%20mathematics&rft.au=Rehman,%20M.&rft.date=2023-10-01&rft.volume=67&rft.issue=10&rft.spage=30&rft.epage=38&rft.pages=30-38&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X23100080&rft_dat=%3Cproquest_cross%3E2912678392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912678392&rft_id=info:pmid/&rfr_iscdi=true |