Loading…

Nonnegative Matrices and Their Structured Singular Values

In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix . The presented new results on the equivalence of st...

Full description

Saved in:
Bibliographic Details
Published in:Russian mathematics 2023-10, Vol.67 (10), p.30-38
Main Authors: Rehman, M., Rasulov, T., Aminov, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113
container_end_page 38
container_issue 10
container_start_page 30
container_title Russian mathematics
container_volume 67
creator Rehman, M.
Rasulov, T.
Aminov, B.
description In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix . The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of , both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of .
doi_str_mv 10.3103/S1066369X23100080
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912678392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912678392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113</originalsourceid><addsrcrecordid>eNp1UFtLwzAUDqLgnP4A3wo-V89Jmix5lOENpj50yt5Klp7WjtrOpBX892ZM8EF8OpfvBh9j5wiXAkFc5QhKCWVWPJ4AGg7YBI3IUo2wOox7hNMdfsxOQtgASMUzNWHmqe86qu3QfFLyaAffOAqJ7cpk-UaNT_LBj24YPZVJ3nT12FqfvNp2pHDKjirbBjr7mVP2cnuznN-ni-e7h_n1InVc6SHVBjOhJC-VM0haaxByHR-qKklzclZWRs5QrkmXwpRQCamAVxyckICIYsou9r5b33_E3KHY9KPvYmTBDXI108LwyMI9y_k-BE9VsfXNu_VfBUKxa6j401DU8L0mRG5Xk_91_l_0DeJ_Zho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912678392</pqid></control><display><type>article</type><title>Nonnegative Matrices and Their Structured Singular Values</title><source>Springer Link</source><creator>Rehman, M. ; Rasulov, T. ; Aminov, B.</creator><creatorcontrib>Rehman, M. ; Rasulov, T. ; Aminov, B.</creatorcontrib><description>In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix . The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of , both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of .</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X23100080</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Determinants ; Equivalence ; Mathematics ; Mathematics and Statistics ; Structured singular values</subject><ispartof>Russian mathematics, 2023-10, Vol.67 (10), p.30-38</ispartof><rights>Allerton Press, Inc. 2023. ISSN 1066-369X, Russian Mathematics, 2023, Vol. 67, No. 10, pp. 30–38. © Allerton Press, Inc., 2023. Russian Text © The Author(s), 2023, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, No. 10, pp. 1–10.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rehman, M.</creatorcontrib><creatorcontrib>Rasulov, T.</creatorcontrib><creatorcontrib>Aminov, B.</creatorcontrib><title>Nonnegative Matrices and Their Structured Singular Values</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix . The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of , both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of .</description><subject>Determinants</subject><subject>Equivalence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Structured singular values</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UFtLwzAUDqLgnP4A3wo-V89Jmix5lOENpj50yt5Klp7WjtrOpBX892ZM8EF8OpfvBh9j5wiXAkFc5QhKCWVWPJ4AGg7YBI3IUo2wOox7hNMdfsxOQtgASMUzNWHmqe86qu3QfFLyaAffOAqJ7cpk-UaNT_LBj24YPZVJ3nT12FqfvNp2pHDKjirbBjr7mVP2cnuznN-ni-e7h_n1InVc6SHVBjOhJC-VM0haaxByHR-qKklzclZWRs5QrkmXwpRQCamAVxyckICIYsou9r5b33_E3KHY9KPvYmTBDXI108LwyMI9y_k-BE9VsfXNu_VfBUKxa6j401DU8L0mRG5Xk_91_l_0DeJ_Zho</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Rehman, M.</creator><creator>Rasulov, T.</creator><creator>Aminov, B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Nonnegative Matrices and Their Structured Singular Values</title><author>Rehman, M. ; Rasulov, T. ; Aminov, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Determinants</topic><topic>Equivalence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Structured singular values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, M.</creatorcontrib><creatorcontrib>Rasulov, T.</creatorcontrib><creatorcontrib>Aminov, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, M.</au><au>Rasulov, T.</au><au>Aminov, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonnegative Matrices and Their Structured Singular Values</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>67</volume><issue>10</issue><spage>30</spage><epage>38</epage><pages>30-38</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix . The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of , both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1066369X23100080</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-369X
ispartof Russian mathematics, 2023-10, Vol.67 (10), p.30-38
issn 1066-369X
1934-810X
language eng
recordid cdi_proquest_journals_2912678392
source Springer Link
subjects Determinants
Equivalence
Mathematics
Mathematics and Statistics
Structured singular values
title Nonnegative Matrices and Their Structured Singular Values
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonnegative%20Matrices%20and%20Their%20Structured%20Singular%20Values&rft.jtitle=Russian%20mathematics&rft.au=Rehman,%20M.&rft.date=2023-10-01&rft.volume=67&rft.issue=10&rft.spage=30&rft.epage=38&rft.pages=30-38&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X23100080&rft_dat=%3Cproquest_cross%3E2912678392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-89143652d6c91e888035b3656fde82eca5f95715be8d39d0f35602f20c3501113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912678392&rft_id=info:pmid/&rfr_iscdi=true