Loading…

Electric Current-Assisted TLP: Bonding of Ultrathin-Walled Inconel 718 Capillaries Temperature Field Simulation and Microstructural Analysis

This study achieved the effective bonding of Inconel 718 ultra-thin-walled capillaries by employing a self-designed apparatus and a novel approach involving current-assisted transient liquid phase (TLP) bonding using BNI-2 brazing material in a vacuum environment. During the bonding process, rapid h...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2024-01, Vol.2679 (1), p.12015
Main Authors: Song, Yueshuai, Zhao, Rui, Wan, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2745-4be869ffca1b05b77f1135d43981cfdb47d8e58f268be995d2a82d5db4ea52313
container_end_page
container_issue 1
container_start_page 12015
container_title Journal of physics. Conference series
container_volume 2679
creator Song, Yueshuai
Zhao, Rui
Wan, Min
description This study achieved the effective bonding of Inconel 718 ultra-thin-walled capillaries by employing a self-designed apparatus and a novel approach involving current-assisted transient liquid phase (TLP) bonding using BNI-2 brazing material in a vacuum environment. During the bonding process, rapid heating and a subsequent period of maintenance were achieved using Joule heating, followed by rapid cooling in the furnace. Compared to the traditional furnace-based TLP bonding, this method significantly improved the bonding efficiency, reduced energy consumption, and minimized the thermal impact on the base material. A temperature field simulation of the ultra-thin-walled capillary bonding was conducted using COMSOL multiphysics simulation software, allowing for the visualization of temperature distribution through temperature contour plots. Microstructural observations of specimens under various process parameters revealed the existence of the Diffusion Affected Zone (DAZ) and Isothermally Solidified Zone (ISZ) in the vertical brazed area of the capillary. Inadequate control of process parameters can lead to defects such as weld seam voids and channel blockage. Given the limited heat resistance of the thin-walled capillaries, excessive current and prolonged bonding time can result in elevated temperatures, which, in turn, may compromise the mechanical properties of the thin-walled capillary.
doi_str_mv 10.1088/1742-6596/2679/1/012015
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2912717440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912717440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2745-4be869ffca1b05b77f1135d43981cfdb47d8e58f268be995d2a82d5db4ea52313</originalsourceid><addsrcrecordid>eNqFkMtKxDAUQIsoOD6-wYA7oU6SNk3qbiw-RkYUnMFlSJtEM2TSmrQL_8GPNmVEEQTv5l645z44SXKC4DmCjE0RzXFakLKY4oKWUzSFCENEdpLJd2f3u2ZsPzkIYQ1hFoNOko8rq5remwZUg_fK9eksBBN6JcFy8XgBLlsnjXsBrQYr23vRvxqXPgtrIzB3TeuUBRQxUInOWCu8UQEs1aZTER28AtdGWQmezGawojetA8JJcG8a34beD01khAUzJ-x7vHqU7Glhgzr-yofJ6vpqWd2mi4ebeTVbpA2mOUnzWrGi1LoRqIakplQjlBGZZyVDjZZ1TiVThGlcsFqVJZFYMCxJbChBcIayw-R0u7fz7dugQs_X7eDjE4HjEmEaZeUwUnRLjc8GrzTvvNkI_84R5KN6Pkrlo2A-queIb9XHybPtpGm7n9V3j9XTb5B3Ukc4-wP-78Qn3mqVJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912717440</pqid></control><display><type>article</type><title>Electric Current-Assisted TLP: Bonding of Ultrathin-Walled Inconel 718 Capillaries Temperature Field Simulation and Microstructural Analysis</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Song, Yueshuai ; Zhao, Rui ; Wan, Min</creator><creatorcontrib>Song, Yueshuai ; Zhao, Rui ; Wan, Min</creatorcontrib><description>This study achieved the effective bonding of Inconel 718 ultra-thin-walled capillaries by employing a self-designed apparatus and a novel approach involving current-assisted transient liquid phase (TLP) bonding using BNI-2 brazing material in a vacuum environment. During the bonding process, rapid heating and a subsequent period of maintenance were achieved using Joule heating, followed by rapid cooling in the furnace. Compared to the traditional furnace-based TLP bonding, this method significantly improved the bonding efficiency, reduced energy consumption, and minimized the thermal impact on the base material. A temperature field simulation of the ultra-thin-walled capillary bonding was conducted using COMSOL multiphysics simulation software, allowing for the visualization of temperature distribution through temperature contour plots. Microstructural observations of specimens under various process parameters revealed the existence of the Diffusion Affected Zone (DAZ) and Isothermally Solidified Zone (ISZ) in the vertical brazed area of the capillary. Inadequate control of process parameters can lead to defects such as weld seam voids and channel blockage. Given the limited heat resistance of the thin-walled capillaries, excessive current and prolonged bonding time can result in elevated temperatures, which, in turn, may compromise the mechanical properties of the thin-walled capillary.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2679/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Blood vessels ; Capillaries ; current-assisted TLP ; Energy consumption ; Heat resistance ; High temperature ; Inconel 718 ; Liquid phases ; Mechanical properties ; Microstructural analysis ; Nickel base alloys ; Ohmic dissipation ; Physics ; Process parameters ; Resistance heating ; Seam welds ; Simulation ; Superalloys ; Temperature ; Temperature distribution ; Thermal resistance ; Transient liquid phase ; Transient liquid phase bonding ; ultra-thin-walled structure</subject><ispartof>Journal of physics. Conference series, 2024-01, Vol.2679 (1), p.12015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2745-4be869ffca1b05b77f1135d43981cfdb47d8e58f268be995d2a82d5db4ea52313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2912717440?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Song, Yueshuai</creatorcontrib><creatorcontrib>Zhao, Rui</creatorcontrib><creatorcontrib>Wan, Min</creatorcontrib><title>Electric Current-Assisted TLP: Bonding of Ultrathin-Walled Inconel 718 Capillaries Temperature Field Simulation and Microstructural Analysis</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>This study achieved the effective bonding of Inconel 718 ultra-thin-walled capillaries by employing a self-designed apparatus and a novel approach involving current-assisted transient liquid phase (TLP) bonding using BNI-2 brazing material in a vacuum environment. During the bonding process, rapid heating and a subsequent period of maintenance were achieved using Joule heating, followed by rapid cooling in the furnace. Compared to the traditional furnace-based TLP bonding, this method significantly improved the bonding efficiency, reduced energy consumption, and minimized the thermal impact on the base material. A temperature field simulation of the ultra-thin-walled capillary bonding was conducted using COMSOL multiphysics simulation software, allowing for the visualization of temperature distribution through temperature contour plots. Microstructural observations of specimens under various process parameters revealed the existence of the Diffusion Affected Zone (DAZ) and Isothermally Solidified Zone (ISZ) in the vertical brazed area of the capillary. Inadequate control of process parameters can lead to defects such as weld seam voids and channel blockage. Given the limited heat resistance of the thin-walled capillaries, excessive current and prolonged bonding time can result in elevated temperatures, which, in turn, may compromise the mechanical properties of the thin-walled capillary.</description><subject>Blood vessels</subject><subject>Capillaries</subject><subject>current-assisted TLP</subject><subject>Energy consumption</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Inconel 718</subject><subject>Liquid phases</subject><subject>Mechanical properties</subject><subject>Microstructural analysis</subject><subject>Nickel base alloys</subject><subject>Ohmic dissipation</subject><subject>Physics</subject><subject>Process parameters</subject><subject>Resistance heating</subject><subject>Seam welds</subject><subject>Simulation</subject><subject>Superalloys</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Thermal resistance</subject><subject>Transient liquid phase</subject><subject>Transient liquid phase bonding</subject><subject>ultra-thin-walled structure</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkMtKxDAUQIsoOD6-wYA7oU6SNk3qbiw-RkYUnMFlSJtEM2TSmrQL_8GPNmVEEQTv5l645z44SXKC4DmCjE0RzXFakLKY4oKWUzSFCENEdpLJd2f3u2ZsPzkIYQ1hFoNOko8rq5remwZUg_fK9eksBBN6JcFy8XgBLlsnjXsBrQYr23vRvxqXPgtrIzB3TeuUBRQxUInOWCu8UQEs1aZTER28AtdGWQmezGawojetA8JJcG8a34beD01khAUzJ-x7vHqU7Glhgzr-yofJ6vpqWd2mi4ebeTVbpA2mOUnzWrGi1LoRqIakplQjlBGZZyVDjZZ1TiVThGlcsFqVJZFYMCxJbChBcIayw-R0u7fz7dugQs_X7eDjE4HjEmEaZeUwUnRLjc8GrzTvvNkI_84R5KN6Pkrlo2A-queIb9XHybPtpGm7n9V3j9XTb5B3Ukc4-wP-78Qn3mqVJw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Song, Yueshuai</creator><creator>Zhao, Rui</creator><creator>Wan, Min</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240101</creationdate><title>Electric Current-Assisted TLP: Bonding of Ultrathin-Walled Inconel 718 Capillaries Temperature Field Simulation and Microstructural Analysis</title><author>Song, Yueshuai ; Zhao, Rui ; Wan, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2745-4be869ffca1b05b77f1135d43981cfdb47d8e58f268be995d2a82d5db4ea52313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blood vessels</topic><topic>Capillaries</topic><topic>current-assisted TLP</topic><topic>Energy consumption</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Inconel 718</topic><topic>Liquid phases</topic><topic>Mechanical properties</topic><topic>Microstructural analysis</topic><topic>Nickel base alloys</topic><topic>Ohmic dissipation</topic><topic>Physics</topic><topic>Process parameters</topic><topic>Resistance heating</topic><topic>Seam welds</topic><topic>Simulation</topic><topic>Superalloys</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Thermal resistance</topic><topic>Transient liquid phase</topic><topic>Transient liquid phase bonding</topic><topic>ultra-thin-walled structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yueshuai</creatorcontrib><creatorcontrib>Zhao, Rui</creatorcontrib><creatorcontrib>Wan, Min</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yueshuai</au><au>Zhao, Rui</au><au>Wan, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Current-Assisted TLP: Bonding of Ultrathin-Walled Inconel 718 Capillaries Temperature Field Simulation and Microstructural Analysis</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2679</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This study achieved the effective bonding of Inconel 718 ultra-thin-walled capillaries by employing a self-designed apparatus and a novel approach involving current-assisted transient liquid phase (TLP) bonding using BNI-2 brazing material in a vacuum environment. During the bonding process, rapid heating and a subsequent period of maintenance were achieved using Joule heating, followed by rapid cooling in the furnace. Compared to the traditional furnace-based TLP bonding, this method significantly improved the bonding efficiency, reduced energy consumption, and minimized the thermal impact on the base material. A temperature field simulation of the ultra-thin-walled capillary bonding was conducted using COMSOL multiphysics simulation software, allowing for the visualization of temperature distribution through temperature contour plots. Microstructural observations of specimens under various process parameters revealed the existence of the Diffusion Affected Zone (DAZ) and Isothermally Solidified Zone (ISZ) in the vertical brazed area of the capillary. Inadequate control of process parameters can lead to defects such as weld seam voids and channel blockage. Given the limited heat resistance of the thin-walled capillaries, excessive current and prolonged bonding time can result in elevated temperatures, which, in turn, may compromise the mechanical properties of the thin-walled capillary.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2679/1/012015</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-01, Vol.2679 (1), p.12015
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2912717440
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Blood vessels
Capillaries
current-assisted TLP
Energy consumption
Heat resistance
High temperature
Inconel 718
Liquid phases
Mechanical properties
Microstructural analysis
Nickel base alloys
Ohmic dissipation
Physics
Process parameters
Resistance heating
Seam welds
Simulation
Superalloys
Temperature
Temperature distribution
Thermal resistance
Transient liquid phase
Transient liquid phase bonding
ultra-thin-walled structure
title Electric Current-Assisted TLP: Bonding of Ultrathin-Walled Inconel 718 Capillaries Temperature Field Simulation and Microstructural Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Current-Assisted%20TLP:%20Bonding%20of%20Ultrathin-Walled%20Inconel%20718%20Capillaries%20Temperature%20Field%20Simulation%20and%20Microstructural%20Analysis&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Song,%20Yueshuai&rft.date=2024-01-01&rft.volume=2679&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2679/1/012015&rft_dat=%3Cproquest_iop_j%3E2912717440%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2745-4be869ffca1b05b77f1135d43981cfdb47d8e58f268be995d2a82d5db4ea52313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912717440&rft_id=info:pmid/&rfr_iscdi=true