Loading…
Restricted Empirical Likelihood Estimation for Time Series Autoregressive Models
In this paper, we first illustrate the restricted empirical likelihood function, as an alternative to the usual empirical likelihood. Then, we use this quasi-empirical likelihood function as a basis for Bayesian analysis of AR( r ) time series models. The efficiency of both the posterior computation...
Saved in:
Published in: | Journal of Statistical Theory and Applications (JSTA) 2021-03, Vol.20 (1), p.11-20 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 20 |
container_issue | 1 |
container_start_page | 11 |
container_title | Journal of Statistical Theory and Applications (JSTA) |
container_volume | 20 |
creator | Bayati, Mahdieh Ghoreishi, S. K. Wu, Jingjing |
description | In this paper, we first illustrate the restricted empirical likelihood function, as an alternative to the usual empirical likelihood. Then, we use this quasi-empirical likelihood function as a basis for Bayesian analysis of AR(
r
) time series models. The efficiency of both the posterior computation algorithm, when the estimating equations are linear functions of the parameters, and the EM algorithm for estimating hyper-parameters is an appealing property of our proposed approach. Moreover, the competitive finite-sample performance of this proposed method is illustrated via both simulation study and analysis of a real dataset. |
doi_str_mv | 10.2991/jsta.d.210121.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2912906515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4917c01a8471433ea023239e85af377a</doaj_id><sourcerecordid>2912906515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-9dc9815e52ebd6914c9157466ca663fb834d3552be035eb401fa2ce164b7e2bc3</originalsourceid><addsrcrecordid>eNpFkVtLAzEQhYMoWKo_wLcFn7dmct08iniDiuLlOWSzszV129RkK_jvTa3g0wzD4ZvDOYScAZ0xY-BimUc362YMKDCYUQoHZMIYiBq0UodkApI3tW4afUxOcw4tFYprarSZkKdnzGMKfsSuul5tQlndUM3DBw7hPcZyzGNYuTHEddXHVL2GFVYvmALm6nI7xoSLhIX5hdVD7HDIJ-Sod0PG0785JW83169Xd_X88fb-6nJee671WJvOmwYkSoZtpwwIb0BqoZR3SvG-bbjouJSsRcoltoJC75hHUKLVyFrPp-R-z-2iW9pNKibTt40u2N9DTAvr0hj8gFYY0J6Ca4QGwTk6yjjjBhvp-mLGFdb5nrVJ8XNbArHLuE3rYt8yA8xQJUuEU8L2qly-rReY_lVA7a4IuyvCdnZfhC1F8B-zyHvk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912906515</pqid></control><display><type>article</type><title>Restricted Empirical Likelihood Estimation for Time Series Autoregressive Models</title><source>Publicly Available Content (ProQuest)</source><creator>Bayati, Mahdieh ; Ghoreishi, S. K. ; Wu, Jingjing</creator><creatorcontrib>Bayati, Mahdieh ; Ghoreishi, S. K. ; Wu, Jingjing</creatorcontrib><description>In this paper, we first illustrate the restricted empirical likelihood function, as an alternative to the usual empirical likelihood. Then, we use this quasi-empirical likelihood function as a basis for Bayesian analysis of AR(
r
) time series models. The efficiency of both the posterior computation algorithm, when the estimating equations are linear functions of the parameters, and the EM algorithm for estimating hyper-parameters is an appealing property of our proposed approach. Moreover, the competitive finite-sample performance of this proposed method is illustrated via both simulation study and analysis of a real dataset.</description><identifier>ISSN: 1538-7887</identifier><identifier>EISSN: 2214-1766</identifier><identifier>DOI: 10.2991/jsta.d.210121.001</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Autoregressive models ; Bayesian analysis ; EM algorithm ; Empirical analysis ; Empirical likelihood ; Estimating equations ; Estimation ; Linear functions ; Parameters ; Research Article ; Time series</subject><ispartof>Journal of Statistical Theory and Applications (JSTA), 2021-03, Vol.20 (1), p.11-20</ispartof><rights>The Authors 2021</rights><rights>The Authors 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2912906515/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912906515?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Bayati, Mahdieh</creatorcontrib><creatorcontrib>Ghoreishi, S. K.</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><title>Restricted Empirical Likelihood Estimation for Time Series Autoregressive Models</title><title>Journal of Statistical Theory and Applications (JSTA)</title><addtitle>J Stat Theory Appl</addtitle><description>In this paper, we first illustrate the restricted empirical likelihood function, as an alternative to the usual empirical likelihood. Then, we use this quasi-empirical likelihood function as a basis for Bayesian analysis of AR(
r
) time series models. The efficiency of both the posterior computation algorithm, when the estimating equations are linear functions of the parameters, and the EM algorithm for estimating hyper-parameters is an appealing property of our proposed approach. Moreover, the competitive finite-sample performance of this proposed method is illustrated via both simulation study and analysis of a real dataset.</description><subject>Algorithms</subject><subject>Autoregressive models</subject><subject>Bayesian analysis</subject><subject>EM algorithm</subject><subject>Empirical analysis</subject><subject>Empirical likelihood</subject><subject>Estimating equations</subject><subject>Estimation</subject><subject>Linear functions</subject><subject>Parameters</subject><subject>Research Article</subject><subject>Time series</subject><issn>1538-7887</issn><issn>2214-1766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpFkVtLAzEQhYMoWKo_wLcFn7dmct08iniDiuLlOWSzszV129RkK_jvTa3g0wzD4ZvDOYScAZ0xY-BimUc362YMKDCYUQoHZMIYiBq0UodkApI3tW4afUxOcw4tFYprarSZkKdnzGMKfsSuul5tQlndUM3DBw7hPcZyzGNYuTHEddXHVL2GFVYvmALm6nI7xoSLhIX5hdVD7HDIJ-Sod0PG0785JW83169Xd_X88fb-6nJee671WJvOmwYkSoZtpwwIb0BqoZR3SvG-bbjouJSsRcoltoJC75hHUKLVyFrPp-R-z-2iW9pNKibTt40u2N9DTAvr0hj8gFYY0J6Ca4QGwTk6yjjjBhvp-mLGFdb5nrVJ8XNbArHLuE3rYt8yA8xQJUuEU8L2qly-rReY_lVA7a4IuyvCdnZfhC1F8B-zyHvk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Bayati, Mahdieh</creator><creator>Ghoreishi, S. K.</creator><creator>Wu, Jingjing</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20210301</creationdate><title>Restricted Empirical Likelihood Estimation for Time Series Autoregressive Models</title><author>Bayati, Mahdieh ; Ghoreishi, S. K. ; Wu, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-9dc9815e52ebd6914c9157466ca663fb834d3552be035eb401fa2ce164b7e2bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autoregressive models</topic><topic>Bayesian analysis</topic><topic>EM algorithm</topic><topic>Empirical analysis</topic><topic>Empirical likelihood</topic><topic>Estimating equations</topic><topic>Estimation</topic><topic>Linear functions</topic><topic>Parameters</topic><topic>Research Article</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayati, Mahdieh</creatorcontrib><creatorcontrib>Ghoreishi, S. K.</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><collection>SpringerOpen</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Statistical Theory and Applications (JSTA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayati, Mahdieh</au><au>Ghoreishi, S. K.</au><au>Wu, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restricted Empirical Likelihood Estimation for Time Series Autoregressive Models</atitle><jtitle>Journal of Statistical Theory and Applications (JSTA)</jtitle><stitle>J Stat Theory Appl</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>20</volume><issue>1</issue><spage>11</spage><epage>20</epage><pages>11-20</pages><issn>1538-7887</issn><eissn>2214-1766</eissn><abstract>In this paper, we first illustrate the restricted empirical likelihood function, as an alternative to the usual empirical likelihood. Then, we use this quasi-empirical likelihood function as a basis for Bayesian analysis of AR(
r
) time series models. The efficiency of both the posterior computation algorithm, when the estimating equations are linear functions of the parameters, and the EM algorithm for estimating hyper-parameters is an appealing property of our proposed approach. Moreover, the competitive finite-sample performance of this proposed method is illustrated via both simulation study and analysis of a real dataset.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.2991/jsta.d.210121.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-7887 |
ispartof | Journal of Statistical Theory and Applications (JSTA), 2021-03, Vol.20 (1), p.11-20 |
issn | 1538-7887 2214-1766 |
language | eng |
recordid | cdi_proquest_journals_2912906515 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Autoregressive models Bayesian analysis EM algorithm Empirical analysis Empirical likelihood Estimating equations Estimation Linear functions Parameters Research Article Time series |
title | Restricted Empirical Likelihood Estimation for Time Series Autoregressive Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restricted%20Empirical%20Likelihood%20Estimation%20for%20Time%20Series%20Autoregressive%20Models&rft.jtitle=Journal%20of%20Statistical%20Theory%20and%20Applications%20(JSTA)&rft.au=Bayati,%20Mahdieh&rft.date=2021-03-01&rft.volume=20&rft.issue=1&rft.spage=11&rft.epage=20&rft.pages=11-20&rft.issn=1538-7887&rft.eissn=2214-1766&rft_id=info:doi/10.2991/jsta.d.210121.001&rft_dat=%3Cproquest_doaj_%3E2912906515%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-9dc9815e52ebd6914c9157466ca663fb834d3552be035eb401fa2ce164b7e2bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912906515&rft_id=info:pmid/&rfr_iscdi=true |