Loading…
CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO
Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical produ...
Saved in:
Published in: | Advanced energy materials 2024-01, Vol.14 (2), p.n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 2 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 14 |
creator | Liu, Li Wang, Fei Chu, Xiang Zhang, Lingling Zhang, Shuaishuai Wang, Xiao Che, Guangbo Song, Shuyan Zhang, Hongjie |
description | Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2‐to‐CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl‐CeO2 heterojunction‐modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation‐calcination method. Benefiting from the strong electron interaction between the CeNCl‐CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl‐CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH.
CeNCl‐CeO2 heterojunction is used as a co‐catalyst to modify Ni nanoparticles (NPs) loaded on nitrogen‐doped carbon. Benefiting from the electronic interaction between CeNCl‐CeO2 and Ni, the obtained catalyst possesses significantly enhanced CO2RR performance. |
doi_str_mv | 10.1002/aenm.202301575 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2913345458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913345458</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-d37cc7eaebcf6bc0978778a9bdd18cae4a7dd923c0af8f58100bce40d3a16faa3</originalsourceid><addsrcrecordid>eNo9UMtqwzAQFKWFhjTXngU9O9XDz2MQbhPI49KehSytQMGxUlmm5NZP6Df2S-o0JXuZ3WV2hh2EHimZU0LYs4LuMGeEcUKzIrtBE5rTNMnLlNxee87u0azv92SstKKE8wmSArai_fn6FrBjeAkRgt8PnY7Od-N2442zDgzeOixUVO2pjz22PuDaWqcddBHXLegYfAAz_J1hb7EYxaIf4QHdWdX2MPvHKXp_qd_EMlnvXldisU6OjPMsMbzQugAFjbZ5o0lVlEVRqqoxhpZaQaoKYyrGNVG2tFk5_txoSInhiuZWKT5FTxfdY_AfA_RR7v0QutFSsopynmZpVo6s6sL6dC2c5DG4gwonSYk8hyjPIcpriHJRbzfXif8CT5pqMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913345458</pqid></control><display><type>article</type><title>CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Liu, Li ; Wang, Fei ; Chu, Xiang ; Zhang, Lingling ; Zhang, Shuaishuai ; Wang, Xiao ; Che, Guangbo ; Song, Shuyan ; Zhang, Hongjie</creator><creatorcontrib>Liu, Li ; Wang, Fei ; Chu, Xiang ; Zhang, Lingling ; Zhang, Shuaishuai ; Wang, Xiao ; Che, Guangbo ; Song, Shuyan ; Zhang, Hongjie</creatorcontrib><description>Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2‐to‐CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl‐CeO2 heterojunction‐modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation‐calcination method. Benefiting from the strong electron interaction between the CeNCl‐CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl‐CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH.
CeNCl‐CeO2 heterojunction is used as a co‐catalyst to modify Ni nanoparticles (NPs) loaded on nitrogen‐doped carbon. Benefiting from the electronic interaction between CeNCl‐CeO2 and Ni, the obtained catalyst possesses significantly enhanced CO2RR performance.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202301575</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; CeNCl‐CeO2 heterojunction ; Cerium oxides ; Chemical synthesis ; CO2 electroreduction ; co‐catalyst ; Density functional theory ; Electrocatalysts ; electron transfer ; Electronic structure ; Fischer-Tropsch process ; Heterojunctions ; Hydrogen evolution ; Nanoparticles ; nickel</subject><ispartof>Advanced energy materials, 2024-01, Vol.14 (2), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7758-752X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Zhang, Lingling</creatorcontrib><creatorcontrib>Zhang, Shuaishuai</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Che, Guangbo</creatorcontrib><creatorcontrib>Song, Shuyan</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><title>CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO</title><title>Advanced energy materials</title><description>Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2‐to‐CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl‐CeO2 heterojunction‐modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation‐calcination method. Benefiting from the strong electron interaction between the CeNCl‐CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl‐CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH.
CeNCl‐CeO2 heterojunction is used as a co‐catalyst to modify Ni nanoparticles (NPs) loaded on nitrogen‐doped carbon. Benefiting from the electronic interaction between CeNCl‐CeO2 and Ni, the obtained catalyst possesses significantly enhanced CO2RR performance.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>CeNCl‐CeO2 heterojunction</subject><subject>Cerium oxides</subject><subject>Chemical synthesis</subject><subject>CO2 electroreduction</subject><subject>co‐catalyst</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>electron transfer</subject><subject>Electronic structure</subject><subject>Fischer-Tropsch process</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution</subject><subject>Nanoparticles</subject><subject>nickel</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtqwzAQFKWFhjTXngU9O9XDz2MQbhPI49KehSytQMGxUlmm5NZP6Df2S-o0JXuZ3WV2hh2EHimZU0LYs4LuMGeEcUKzIrtBE5rTNMnLlNxee87u0azv92SstKKE8wmSArai_fn6FrBjeAkRgt8PnY7Od-N2442zDgzeOixUVO2pjz22PuDaWqcddBHXLegYfAAz_J1hb7EYxaIf4QHdWdX2MPvHKXp_qd_EMlnvXldisU6OjPMsMbzQugAFjbZ5o0lVlEVRqqoxhpZaQaoKYyrGNVG2tFk5_txoSInhiuZWKT5FTxfdY_AfA_RR7v0QutFSsopynmZpVo6s6sL6dC2c5DG4gwonSYk8hyjPIcpriHJRbzfXif8CT5pqMw</recordid><startdate>20240112</startdate><enddate>20240112</enddate><creator>Liu, Li</creator><creator>Wang, Fei</creator><creator>Chu, Xiang</creator><creator>Zhang, Lingling</creator><creator>Zhang, Shuaishuai</creator><creator>Wang, Xiao</creator><creator>Che, Guangbo</creator><creator>Song, Shuyan</creator><creator>Zhang, Hongjie</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7758-752X</orcidid></search><sort><creationdate>20240112</creationdate><title>CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO</title><author>Liu, Li ; Wang, Fei ; Chu, Xiang ; Zhang, Lingling ; Zhang, Shuaishuai ; Wang, Xiao ; Che, Guangbo ; Song, Shuyan ; Zhang, Hongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-d37cc7eaebcf6bc0978778a9bdd18cae4a7dd923c0af8f58100bce40d3a16faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>CeNCl‐CeO2 heterojunction</topic><topic>Cerium oxides</topic><topic>Chemical synthesis</topic><topic>CO2 electroreduction</topic><topic>co‐catalyst</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>electron transfer</topic><topic>Electronic structure</topic><topic>Fischer-Tropsch process</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution</topic><topic>Nanoparticles</topic><topic>nickel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Zhang, Lingling</creatorcontrib><creatorcontrib>Zhang, Shuaishuai</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Che, Guangbo</creatorcontrib><creatorcontrib>Song, Shuyan</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Li</au><au>Wang, Fei</au><au>Chu, Xiang</au><au>Zhang, Lingling</au><au>Zhang, Shuaishuai</au><au>Wang, Xiao</au><au>Che, Guangbo</au><au>Song, Shuyan</au><au>Zhang, Hongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO</atitle><jtitle>Advanced energy materials</jtitle><date>2024-01-12</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2‐to‐CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl‐CeO2 heterojunction‐modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation‐calcination method. Benefiting from the strong electron interaction between the CeNCl‐CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl‐CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH.
CeNCl‐CeO2 heterojunction is used as a co‐catalyst to modify Ni nanoparticles (NPs) loaded on nitrogen‐doped carbon. Benefiting from the electronic interaction between CeNCl‐CeO2 and Ni, the obtained catalyst possesses significantly enhanced CO2RR performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202301575</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7758-752X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2024-01, Vol.14 (2), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2913345458 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carbon dioxide Catalysts CeNCl‐CeO2 heterojunction Cerium oxides Chemical synthesis CO2 electroreduction co‐catalyst Density functional theory Electrocatalysts electron transfer Electronic structure Fischer-Tropsch process Heterojunctions Hydrogen evolution Nanoparticles nickel |
title | CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CeNCl%E2%80%90CeO2%20Heterojunction%E2%80%90Modified%20Ni%20Catalysts%20for%20Efficient%20Electroreduction%20of%20CO2%20to%20CO&rft.jtitle=Advanced%20energy%20materials&rft.au=Liu,%20Li&rft.date=2024-01-12&rft.volume=14&rft.issue=2&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202301575&rft_dat=%3Cproquest_wiley%3E2913345458%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2335-d37cc7eaebcf6bc0978778a9bdd18cae4a7dd923c0af8f58100bce40d3a16faa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913345458&rft_id=info:pmid/&rfr_iscdi=true |