Loading…

CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO

Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical produ...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2024-01, Vol.14 (2), p.n/a
Main Authors: Liu, Li, Wang, Fei, Chu, Xiang, Zhang, Lingling, Zhang, Shuaishuai, Wang, Xiao, Che, Guangbo, Song, Shuyan, Zhang, Hongjie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 2
container_start_page
container_title Advanced energy materials
container_volume 14
creator Liu, Li
Wang, Fei
Chu, Xiang
Zhang, Lingling
Zhang, Shuaishuai
Wang, Xiao
Che, Guangbo
Song, Shuyan
Zhang, Hongjie
description Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2‐to‐CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl‐CeO2 heterojunction‐modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation‐calcination method. Benefiting from the strong electron interaction between the CeNCl‐CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl‐CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH. CeNCl‐CeO2 heterojunction is used as a co‐catalyst to modify Ni nanoparticles (NPs) loaded on nitrogen‐doped carbon. Benefiting from the electronic interaction between CeNCl‐CeO2 and Ni, the obtained catalyst possesses significantly enhanced CO2RR performance.
doi_str_mv 10.1002/aenm.202301575
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2913345458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913345458</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-d37cc7eaebcf6bc0978778a9bdd18cae4a7dd923c0af8f58100bce40d3a16faa3</originalsourceid><addsrcrecordid>eNo9UMtqwzAQFKWFhjTXngU9O9XDz2MQbhPI49KehSytQMGxUlmm5NZP6Df2S-o0JXuZ3WV2hh2EHimZU0LYs4LuMGeEcUKzIrtBE5rTNMnLlNxee87u0azv92SstKKE8wmSArai_fn6FrBjeAkRgt8PnY7Od-N2442zDgzeOixUVO2pjz22PuDaWqcddBHXLegYfAAz_J1hb7EYxaIf4QHdWdX2MPvHKXp_qd_EMlnvXldisU6OjPMsMbzQugAFjbZ5o0lVlEVRqqoxhpZaQaoKYyrGNVG2tFk5_txoSInhiuZWKT5FTxfdY_AfA_RR7v0QutFSsopynmZpVo6s6sL6dC2c5DG4gwonSYk8hyjPIcpriHJRbzfXif8CT5pqMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913345458</pqid></control><display><type>article</type><title>CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Liu, Li ; Wang, Fei ; Chu, Xiang ; Zhang, Lingling ; Zhang, Shuaishuai ; Wang, Xiao ; Che, Guangbo ; Song, Shuyan ; Zhang, Hongjie</creator><creatorcontrib>Liu, Li ; Wang, Fei ; Chu, Xiang ; Zhang, Lingling ; Zhang, Shuaishuai ; Wang, Xiao ; Che, Guangbo ; Song, Shuyan ; Zhang, Hongjie</creatorcontrib><description>Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2‐to‐CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl‐CeO2 heterojunction‐modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation‐calcination method. Benefiting from the strong electron interaction between the CeNCl‐CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl‐CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH. CeNCl‐CeO2 heterojunction is used as a co‐catalyst to modify Ni nanoparticles (NPs) loaded on nitrogen‐doped carbon. Benefiting from the electronic interaction between CeNCl‐CeO2 and Ni, the obtained catalyst possesses significantly enhanced CO2RR performance.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202301575</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; CeNCl‐CeO2 heterojunction ; Cerium oxides ; Chemical synthesis ; CO2 electroreduction ; co‐catalyst ; Density functional theory ; Electrocatalysts ; electron transfer ; Electronic structure ; Fischer-Tropsch process ; Heterojunctions ; Hydrogen evolution ; Nanoparticles ; nickel</subject><ispartof>Advanced energy materials, 2024-01, Vol.14 (2), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7758-752X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Zhang, Lingling</creatorcontrib><creatorcontrib>Zhang, Shuaishuai</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Che, Guangbo</creatorcontrib><creatorcontrib>Song, Shuyan</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><title>CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO</title><title>Advanced energy materials</title><description>Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2‐to‐CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl‐CeO2 heterojunction‐modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation‐calcination method. Benefiting from the strong electron interaction between the CeNCl‐CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl‐CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH. CeNCl‐CeO2 heterojunction is used as a co‐catalyst to modify Ni nanoparticles (NPs) loaded on nitrogen‐doped carbon. Benefiting from the electronic interaction between CeNCl‐CeO2 and Ni, the obtained catalyst possesses significantly enhanced CO2RR performance.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>CeNCl‐CeO2 heterojunction</subject><subject>Cerium oxides</subject><subject>Chemical synthesis</subject><subject>CO2 electroreduction</subject><subject>co‐catalyst</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>electron transfer</subject><subject>Electronic structure</subject><subject>Fischer-Tropsch process</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution</subject><subject>Nanoparticles</subject><subject>nickel</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtqwzAQFKWFhjTXngU9O9XDz2MQbhPI49KehSytQMGxUlmm5NZP6Df2S-o0JXuZ3WV2hh2EHimZU0LYs4LuMGeEcUKzIrtBE5rTNMnLlNxee87u0azv92SstKKE8wmSArai_fn6FrBjeAkRgt8PnY7Od-N2442zDgzeOixUVO2pjz22PuDaWqcddBHXLegYfAAz_J1hb7EYxaIf4QHdWdX2MPvHKXp_qd_EMlnvXldisU6OjPMsMbzQugAFjbZ5o0lVlEVRqqoxhpZaQaoKYyrGNVG2tFk5_txoSInhiuZWKT5FTxfdY_AfA_RR7v0QutFSsopynmZpVo6s6sL6dC2c5DG4gwonSYk8hyjPIcpriHJRbzfXif8CT5pqMw</recordid><startdate>20240112</startdate><enddate>20240112</enddate><creator>Liu, Li</creator><creator>Wang, Fei</creator><creator>Chu, Xiang</creator><creator>Zhang, Lingling</creator><creator>Zhang, Shuaishuai</creator><creator>Wang, Xiao</creator><creator>Che, Guangbo</creator><creator>Song, Shuyan</creator><creator>Zhang, Hongjie</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7758-752X</orcidid></search><sort><creationdate>20240112</creationdate><title>CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO</title><author>Liu, Li ; Wang, Fei ; Chu, Xiang ; Zhang, Lingling ; Zhang, Shuaishuai ; Wang, Xiao ; Che, Guangbo ; Song, Shuyan ; Zhang, Hongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-d37cc7eaebcf6bc0978778a9bdd18cae4a7dd923c0af8f58100bce40d3a16faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>CeNCl‐CeO2 heterojunction</topic><topic>Cerium oxides</topic><topic>Chemical synthesis</topic><topic>CO2 electroreduction</topic><topic>co‐catalyst</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>electron transfer</topic><topic>Electronic structure</topic><topic>Fischer-Tropsch process</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution</topic><topic>Nanoparticles</topic><topic>nickel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Zhang, Lingling</creatorcontrib><creatorcontrib>Zhang, Shuaishuai</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Che, Guangbo</creatorcontrib><creatorcontrib>Song, Shuyan</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Li</au><au>Wang, Fei</au><au>Chu, Xiang</au><au>Zhang, Lingling</au><au>Zhang, Shuaishuai</au><au>Wang, Xiao</au><au>Che, Guangbo</au><au>Song, Shuyan</au><au>Zhang, Hongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO</atitle><jtitle>Advanced energy materials</jtitle><date>2024-01-12</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Renewable‐electricity‐powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value‐added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2‐to‐CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl‐CeO2 heterojunction‐modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation‐calcination method. Benefiting from the strong electron interaction between the CeNCl‐CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl‐CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH. CeNCl‐CeO2 heterojunction is used as a co‐catalyst to modify Ni nanoparticles (NPs) loaded on nitrogen‐doped carbon. Benefiting from the electronic interaction between CeNCl‐CeO2 and Ni, the obtained catalyst possesses significantly enhanced CO2RR performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202301575</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7758-752X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-01, Vol.14 (2), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2913345458
source Wiley-Blackwell Read & Publish Collection
subjects Carbon dioxide
Catalysts
CeNCl‐CeO2 heterojunction
Cerium oxides
Chemical synthesis
CO2 electroreduction
co‐catalyst
Density functional theory
Electrocatalysts
electron transfer
Electronic structure
Fischer-Tropsch process
Heterojunctions
Hydrogen evolution
Nanoparticles
nickel
title CeNCl‐CeO2 Heterojunction‐Modified Ni Catalysts for Efficient Electroreduction of CO2 to CO
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CeNCl%E2%80%90CeO2%20Heterojunction%E2%80%90Modified%20Ni%20Catalysts%20for%20Efficient%20Electroreduction%20of%20CO2%20to%20CO&rft.jtitle=Advanced%20energy%20materials&rft.au=Liu,%20Li&rft.date=2024-01-12&rft.volume=14&rft.issue=2&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202301575&rft_dat=%3Cproquest_wiley%3E2913345458%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2335-d37cc7eaebcf6bc0978778a9bdd18cae4a7dd923c0af8f58100bce40d3a16faa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913345458&rft_id=info:pmid/&rfr_iscdi=true