Loading…
Study on intentional control strategy of COVID-19
With the ongoing evolution of the novel coronavirus pathogen and continuous improvements in our social environment, the mortality rate of COVID-19 is on a decline. In response to this, we introduce an adaptive control strategy known as intentional control, which offers cost-efficiency and superior c...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2024-01, Vol.46 (1), p.1881-1898 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the ongoing evolution of the novel coronavirus pathogen and continuous improvements in our social environment, the mortality rate of COVID-19 is on a decline. In response to this, we introduce an adaptive control strategy known as intentional control, which offers cost-efficiency and superior control effectiveness. The classical SEIR model faces limitations in accurately representing close contacts and sub-close contacts and fails to distinguish their varying levels of infectivity. To address this, our study modifies the classical model by incorporating close contact (E) and a sub-close contact (E2) while reworking the infectious mechanism. Once the model is formulated, we employ various statistical methods to identify crucial parameters, including R2, adjusted R2, and standard deviation. For disease control, we implement an intentional control program with four distinct grades. We develop and apply a scheme in MATLAB for our proposed model, generating diverse simulation results based on realistic parameter values for discussion. Additionally, we explore a range of strategy combinations to differentiate their effectiveness under various social conditions, aiming to identify an optimal approach. Comparing the intentional control strategy to random control, our findings consistently demonstrate the superiority of intentional control across all scenarios. Furthermore, the results indicate that our approach better aligns with the characteristics of the novel coronavirus, characterized by an “extremely low fatality rate and strong infectivity,” while offering detailed insights into the transmission dynamics among different compartments. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-235149 |