Loading…

Enhanced active edge sites on MoSe2 nanostructures for stable electrocatalytic and photocatalytic hydrogen evolution reaction

In this work, we report a simple one-pot hydrothermal synthesis of MoX 2 and NiX 2 (X = O, S, and Se) for facilitating the catalytic hydrogen evolution reaction (HER) in acidic medium. The prepared metal chalcogenides were explored as both electrocatalyst and photocatalyst due to their excellent opt...

Full description

Saved in:
Bibliographic Details
Published in:Ionics 2024, Vol.30 (1), p.457-469
Main Authors: Gowrisankar, A., Subhashini, D., Sureka, K., Selvaraju, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-91be8db70c9531e8c0d6f726b07196e159faa3c293a51e951184c318d54e9e13
container_end_page 469
container_issue 1
container_start_page 457
container_title Ionics
container_volume 30
creator Gowrisankar, A.
Subhashini, D.
Sureka, K.
Selvaraju, T.
description In this work, we report a simple one-pot hydrothermal synthesis of MoX 2 and NiX 2 (X = O, S, and Se) for facilitating the catalytic hydrogen evolution reaction (HER) in acidic medium. The prepared metal chalcogenides were explored as both electrocatalyst and photocatalyst due to their excellent optical and electrical properties. Among the chalcogenides, MoSe 2 shows significantly enhanced electrocatalytic as well as photocatalytic activity. It is because the existence of porous surface enables abundant active sites for the evolution of hydrogen (H 2 ) gas. As a result, MoSe 2 -loaded electrode shows a low overpotential ( η ) of 216 mV vs RHE at 5 mA cm −2 with the Tafel slope of 105 mV dec −1 and high durability for about 1000 cycles. Further, the photocatalytic H 2 production measurements were carried out for all the prepared metal chalcogenides under the visible light irradiation. The optical band gap is calculated as 1.13 eV for MoSe 2 which is responsible for the superior photocatalytic performance with the H 2 production of 2676 μmol h −1  g −1 . Interestingly, MoSe 2 retains 96% of its photocatalytic activity even after 12 h of irradiation. The impact of morphology and the detailed study of band gap position have been correlated to the rate of the H 2 evolution. Graphical abstract
doi_str_mv 10.1007/s11581-023-05335-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913467580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913467580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-91be8db70c9531e8c0d6f726b07196e159faa3c293a51e951184c318d54e9e13</originalsourceid><addsrcrecordid>eNp9kEFrGzEQhUVJoG7aP9CToOdtZqTVanUMwW0CCTnUdyFrZ-01W8mRtCY-9L9nXQfaU04Dj--9gY-xrwjfEUBfZ0TVYgVCVqCkVNXLB7bAthEV6AYu2AJMrSsNtf7IPuW8A2gaFHrB_izD1gVPHXe-DAfi1G2I56FQ5jHwx_iLBA8uxFzS5MuU5ryPiefi1uNMj-RLit4VNx7L4LkLHd9vY_kv2h67FDcUOB3iOJVhnk10-hbDZ3bZuzHTl7d7xVY_lqvbu-rh6ef97c1D5YWGUhlcU9utNXijJFLroWt6LZo1aDQNoTK9c9ILI51CMgqxrb3EtlM1GUJ5xb6dZ_cpPk-Ui93FKYX5oxUGZd1o1cJMiTPlU8w5UW_3afjt0tEi2JNle7ZsZ8v2r2X7MpfkuZRnOGwo_Zt-p_UKRLKC7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913467580</pqid></control><display><type>article</type><title>Enhanced active edge sites on MoSe2 nanostructures for stable electrocatalytic and photocatalytic hydrogen evolution reaction</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Gowrisankar, A. ; Subhashini, D. ; Sureka, K. ; Selvaraju, T.</creator><creatorcontrib>Gowrisankar, A. ; Subhashini, D. ; Sureka, K. ; Selvaraju, T.</creatorcontrib><description>In this work, we report a simple one-pot hydrothermal synthesis of MoX 2 and NiX 2 (X = O, S, and Se) for facilitating the catalytic hydrogen evolution reaction (HER) in acidic medium. The prepared metal chalcogenides were explored as both electrocatalyst and photocatalyst due to their excellent optical and electrical properties. Among the chalcogenides, MoSe 2 shows significantly enhanced electrocatalytic as well as photocatalytic activity. It is because the existence of porous surface enables abundant active sites for the evolution of hydrogen (H 2 ) gas. As a result, MoSe 2 -loaded electrode shows a low overpotential ( η ) of 216 mV vs RHE at 5 mA cm −2 with the Tafel slope of 105 mV dec −1 and high durability for about 1000 cycles. Further, the photocatalytic H 2 production measurements were carried out for all the prepared metal chalcogenides under the visible light irradiation. The optical band gap is calculated as 1.13 eV for MoSe 2 which is responsible for the superior photocatalytic performance with the H 2 production of 2676 μmol h −1  g −1 . Interestingly, MoSe 2 retains 96% of its photocatalytic activity even after 12 h of irradiation. The impact of morphology and the detailed study of band gap position have been correlated to the rate of the H 2 evolution. Graphical abstract</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-023-05335-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Catalytic activity ; Chalcogenides ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrical properties ; Electrocatalysts ; Electrochemistry ; Energy gap ; Energy Storage ; Hydrogen evolution reactions ; Hydrogen production ; Light irradiation ; Molybdenum compounds ; Optical and Electronic Materials ; Optical properties ; Original Paper ; Photocatalysis ; Renewable and Green Energy</subject><ispartof>Ionics, 2024, Vol.30 (1), p.457-469</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-91be8db70c9531e8c0d6f726b07196e159faa3c293a51e951184c318d54e9e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gowrisankar, A.</creatorcontrib><creatorcontrib>Subhashini, D.</creatorcontrib><creatorcontrib>Sureka, K.</creatorcontrib><creatorcontrib>Selvaraju, T.</creatorcontrib><title>Enhanced active edge sites on MoSe2 nanostructures for stable electrocatalytic and photocatalytic hydrogen evolution reaction</title><title>Ionics</title><addtitle>Ionics</addtitle><description>In this work, we report a simple one-pot hydrothermal synthesis of MoX 2 and NiX 2 (X = O, S, and Se) for facilitating the catalytic hydrogen evolution reaction (HER) in acidic medium. The prepared metal chalcogenides were explored as both electrocatalyst and photocatalyst due to their excellent optical and electrical properties. Among the chalcogenides, MoSe 2 shows significantly enhanced electrocatalytic as well as photocatalytic activity. It is because the existence of porous surface enables abundant active sites for the evolution of hydrogen (H 2 ) gas. As a result, MoSe 2 -loaded electrode shows a low overpotential ( η ) of 216 mV vs RHE at 5 mA cm −2 with the Tafel slope of 105 mV dec −1 and high durability for about 1000 cycles. Further, the photocatalytic H 2 production measurements were carried out for all the prepared metal chalcogenides under the visible light irradiation. The optical band gap is calculated as 1.13 eV for MoSe 2 which is responsible for the superior photocatalytic performance with the H 2 production of 2676 μmol h −1  g −1 . Interestingly, MoSe 2 retains 96% of its photocatalytic activity even after 12 h of irradiation. The impact of morphology and the detailed study of band gap position have been correlated to the rate of the H 2 evolution. Graphical abstract</description><subject>Catalytic activity</subject><subject>Chalcogenides</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrical properties</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy gap</subject><subject>Energy Storage</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Light irradiation</subject><subject>Molybdenum compounds</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Paper</subject><subject>Photocatalysis</subject><subject>Renewable and Green Energy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrGzEQhUVJoG7aP9CToOdtZqTVanUMwW0CCTnUdyFrZ-01W8mRtCY-9L9nXQfaU04Dj--9gY-xrwjfEUBfZ0TVYgVCVqCkVNXLB7bAthEV6AYu2AJMrSsNtf7IPuW8A2gaFHrB_izD1gVPHXe-DAfi1G2I56FQ5jHwx_iLBA8uxFzS5MuU5ryPiefi1uNMj-RLit4VNx7L4LkLHd9vY_kv2h67FDcUOB3iOJVhnk10-hbDZ3bZuzHTl7d7xVY_lqvbu-rh6ef97c1D5YWGUhlcU9utNXijJFLroWt6LZo1aDQNoTK9c9ILI51CMgqxrb3EtlM1GUJ5xb6dZ_cpPk-Ui93FKYX5oxUGZd1o1cJMiTPlU8w5UW_3afjt0tEi2JNle7ZsZ8v2r2X7MpfkuZRnOGwo_Zt-p_UKRLKC7Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gowrisankar, A.</creator><creator>Subhashini, D.</creator><creator>Sureka, K.</creator><creator>Selvaraju, T.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Enhanced active edge sites on MoSe2 nanostructures for stable electrocatalytic and photocatalytic hydrogen evolution reaction</title><author>Gowrisankar, A. ; Subhashini, D. ; Sureka, K. ; Selvaraju, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-91be8db70c9531e8c0d6f726b07196e159faa3c293a51e951184c318d54e9e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalytic activity</topic><topic>Chalcogenides</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrical properties</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy gap</topic><topic>Energy Storage</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Light irradiation</topic><topic>Molybdenum compounds</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Paper</topic><topic>Photocatalysis</topic><topic>Renewable and Green Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gowrisankar, A.</creatorcontrib><creatorcontrib>Subhashini, D.</creatorcontrib><creatorcontrib>Sureka, K.</creatorcontrib><creatorcontrib>Selvaraju, T.</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gowrisankar, A.</au><au>Subhashini, D.</au><au>Sureka, K.</au><au>Selvaraju, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced active edge sites on MoSe2 nanostructures for stable electrocatalytic and photocatalytic hydrogen evolution reaction</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2024</date><risdate>2024</risdate><volume>30</volume><issue>1</issue><spage>457</spage><epage>469</epage><pages>457-469</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In this work, we report a simple one-pot hydrothermal synthesis of MoX 2 and NiX 2 (X = O, S, and Se) for facilitating the catalytic hydrogen evolution reaction (HER) in acidic medium. The prepared metal chalcogenides were explored as both electrocatalyst and photocatalyst due to their excellent optical and electrical properties. Among the chalcogenides, MoSe 2 shows significantly enhanced electrocatalytic as well as photocatalytic activity. It is because the existence of porous surface enables abundant active sites for the evolution of hydrogen (H 2 ) gas. As a result, MoSe 2 -loaded electrode shows a low overpotential ( η ) of 216 mV vs RHE at 5 mA cm −2 with the Tafel slope of 105 mV dec −1 and high durability for about 1000 cycles. Further, the photocatalytic H 2 production measurements were carried out for all the prepared metal chalcogenides under the visible light irradiation. The optical band gap is calculated as 1.13 eV for MoSe 2 which is responsible for the superior photocatalytic performance with the H 2 production of 2676 μmol h −1  g −1 . Interestingly, MoSe 2 retains 96% of its photocatalytic activity even after 12 h of irradiation. The impact of morphology and the detailed study of band gap position have been correlated to the rate of the H 2 evolution. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-023-05335-x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2024, Vol.30 (1), p.457-469
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2913467580
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Catalytic activity
Chalcogenides
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrical properties
Electrocatalysts
Electrochemistry
Energy gap
Energy Storage
Hydrogen evolution reactions
Hydrogen production
Light irradiation
Molybdenum compounds
Optical and Electronic Materials
Optical properties
Original Paper
Photocatalysis
Renewable and Green Energy
title Enhanced active edge sites on MoSe2 nanostructures for stable electrocatalytic and photocatalytic hydrogen evolution reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20active%20edge%20sites%20on%20MoSe2%20nanostructures%20for%20stable%20electrocatalytic%20and%20photocatalytic%20hydrogen%20evolution%20reaction&rft.jtitle=Ionics&rft.au=Gowrisankar,%20A.&rft.date=2024&rft.volume=30&rft.issue=1&rft.spage=457&rft.epage=469&rft.pages=457-469&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-023-05335-x&rft_dat=%3Cproquest_cross%3E2913467580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-91be8db70c9531e8c0d6f726b07196e159faa3c293a51e951184c318d54e9e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913467580&rft_id=info:pmid/&rfr_iscdi=true