Loading…
Drying of graphene oxide: effects on red blood cells and protein corona formation
In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dri...
Saved in:
Published in: | Journal of materials science 2024, Vol.59 (2), p.577-592 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413 |
---|---|
cites | cdi_FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413 |
container_end_page | 592 |
container_issue | 2 |
container_start_page | 577 |
container_title | Journal of materials science |
container_volume | 59 |
creator | de Sousa Maia, Djalma Lucas Côa, Francine da Silva, Kelly Barbosa Martins, Carlos Henrique Zanini Franqui, Lidiane Silva Fonseca, Leandro Carneiro da Silva, Douglas Soares de Souza Delite, Fabrício Martinez, Diego Stéfani Teodoro Alves, Oswaldo Luiz |
description | In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dried exploring two procedures: using a vacuum system at room temperature (GO-VD) and lyophilization (GO-LP). The nanomaterials were well characterized by microscopic (TEM, SEM, and AFM), spectroscopic (FTIR, UV–Vis, Raman, and
13
C NMR), and XRD techniques. The lyophilization process produced a nanomaterial with a three-dimensional porous macrostructure and the lowest oxidation degree. In contrast, the vacuum-drying process at room temperature provided a nanomaterial with a film-like macrostructure, presenting a higher oxidation degree as well as physicochemical properties more similar to those of GO-Disp. All of the nanomaterials adsorbed human plasma proteins; however, the protein adsorption was more selective for GO-Disp. GO-VD induced hemolysis of red blood cells in a lower concentration than GO-Disp and GO-LP, but the protein corona formation suppressed the hemolytic effect for all nanomaterials. Finally, our results indicate that the method applied to dry GO nanomaterials has a critical influence on their nanobiointeractions with cells and proteins, suggesting that more attention should be paid to biomedical applications and toxicological evaluations associated with these promising nanomaterials.
Graphical abstract |
doi_str_mv | 10.1007/s10853-023-09163-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913576965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913576965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSfu1lvUj-hIIKeQzaZ1C3bpCZbsP_e1RW8eRjm8j7vDA9C54xeMkrrq8KoVoJQPk7DKkH4AZoxVQsiNRWHaEYp54TLih2jk1LWlFJVczZDL7d538UVTgGvst2-QwScPjsP1xhCADcUnCLO4HHbp-Sxg74v2EaPtzkN0EXsUk7R4pDyxg5diqfoKNi-wNnvnqO3-7vXxSNZPj88LW6WxPGaMqK4krp1TdCtrEB7pmXgVqu21sKr4BvJrADfalsFBqpxNkhQoXa-gUAlE3N0MfWOj3zsoAxmnXY5jicNb5hQddVUakzxKeVyKiVDMNvcbWzeG0bNtzozqTOjOvOjzvAREhNUxnBcQf6r_of6AliocXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913576965</pqid></control><display><type>article</type><title>Drying of graphene oxide: effects on red blood cells and protein corona formation</title><source>Springer Nature</source><creator>de Sousa Maia, Djalma Lucas ; Côa, Francine ; da Silva, Kelly Barbosa ; Martins, Carlos Henrique Zanini ; Franqui, Lidiane Silva ; Fonseca, Leandro Carneiro ; da Silva, Douglas Soares ; de Souza Delite, Fabrício ; Martinez, Diego Stéfani Teodoro ; Alves, Oswaldo Luiz</creator><creatorcontrib>de Sousa Maia, Djalma Lucas ; Côa, Francine ; da Silva, Kelly Barbosa ; Martins, Carlos Henrique Zanini ; Franqui, Lidiane Silva ; Fonseca, Leandro Carneiro ; da Silva, Douglas Soares ; de Souza Delite, Fabrício ; Martinez, Diego Stéfani Teodoro ; Alves, Oswaldo Luiz</creatorcontrib><description>In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dried exploring two procedures: using a vacuum system at room temperature (GO-VD) and lyophilization (GO-LP). The nanomaterials were well characterized by microscopic (TEM, SEM, and AFM), spectroscopic (FTIR, UV–Vis, Raman, and
13
C NMR), and XRD techniques. The lyophilization process produced a nanomaterial with a three-dimensional porous macrostructure and the lowest oxidation degree. In contrast, the vacuum-drying process at room temperature provided a nanomaterial with a film-like macrostructure, presenting a higher oxidation degree as well as physicochemical properties more similar to those of GO-Disp. All of the nanomaterials adsorbed human plasma proteins; however, the protein adsorption was more selective for GO-Disp. GO-VD induced hemolysis of red blood cells in a lower concentration than GO-Disp and GO-LP, but the protein corona formation suppressed the hemolytic effect for all nanomaterials. Finally, our results indicate that the method applied to dry GO nanomaterials has a critical influence on their nanobiointeractions with cells and proteins, suggesting that more attention should be paid to biomedical applications and toxicological evaluations associated with these promising nanomaterials.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-09163-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biological effects ; Biomedical materials ; Blood ; Blood plasma ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Colloiding ; Crystallography and Scattering Methods ; Drying ; Erythrocytes ; Graphene ; Hemolysis ; Macrostructure ; Materials for Life Sciences ; Materials Science ; Nanomaterials ; NMR ; Nuclear magnetic resonance ; Oxidation ; Polymer Sciences ; Protein adsorption ; Proteins ; Room temperature ; Solid Mechanics</subject><ispartof>Journal of materials science, 2024, Vol.59 (2), p.577-592</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413</citedby><cites>FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413</cites><orcidid>0000-0001-7496-7239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Sousa Maia, Djalma Lucas</creatorcontrib><creatorcontrib>Côa, Francine</creatorcontrib><creatorcontrib>da Silva, Kelly Barbosa</creatorcontrib><creatorcontrib>Martins, Carlos Henrique Zanini</creatorcontrib><creatorcontrib>Franqui, Lidiane Silva</creatorcontrib><creatorcontrib>Fonseca, Leandro Carneiro</creatorcontrib><creatorcontrib>da Silva, Douglas Soares</creatorcontrib><creatorcontrib>de Souza Delite, Fabrício</creatorcontrib><creatorcontrib>Martinez, Diego Stéfani Teodoro</creatorcontrib><creatorcontrib>Alves, Oswaldo Luiz</creatorcontrib><title>Drying of graphene oxide: effects on red blood cells and protein corona formation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dried exploring two procedures: using a vacuum system at room temperature (GO-VD) and lyophilization (GO-LP). The nanomaterials were well characterized by microscopic (TEM, SEM, and AFM), spectroscopic (FTIR, UV–Vis, Raman, and
13
C NMR), and XRD techniques. The lyophilization process produced a nanomaterial with a three-dimensional porous macrostructure and the lowest oxidation degree. In contrast, the vacuum-drying process at room temperature provided a nanomaterial with a film-like macrostructure, presenting a higher oxidation degree as well as physicochemical properties more similar to those of GO-Disp. All of the nanomaterials adsorbed human plasma proteins; however, the protein adsorption was more selective for GO-Disp. GO-VD induced hemolysis of red blood cells in a lower concentration than GO-Disp and GO-LP, but the protein corona formation suppressed the hemolytic effect for all nanomaterials. Finally, our results indicate that the method applied to dry GO nanomaterials has a critical influence on their nanobiointeractions with cells and proteins, suggesting that more attention should be paid to biomedical applications and toxicological evaluations associated with these promising nanomaterials.
Graphical abstract</description><subject>Biological effects</subject><subject>Biomedical materials</subject><subject>Blood</subject><subject>Blood plasma</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Colloiding</subject><subject>Crystallography and Scattering Methods</subject><subject>Drying</subject><subject>Erythrocytes</subject><subject>Graphene</subject><subject>Hemolysis</subject><subject>Macrostructure</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidation</subject><subject>Polymer Sciences</subject><subject>Protein adsorption</subject><subject>Proteins</subject><subject>Room temperature</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSfu1lvUj-hIIKeQzaZ1C3bpCZbsP_e1RW8eRjm8j7vDA9C54xeMkrrq8KoVoJQPk7DKkH4AZoxVQsiNRWHaEYp54TLih2jk1LWlFJVczZDL7d538UVTgGvst2-QwScPjsP1xhCADcUnCLO4HHbp-Sxg74v2EaPtzkN0EXsUk7R4pDyxg5diqfoKNi-wNnvnqO3-7vXxSNZPj88LW6WxPGaMqK4krp1TdCtrEB7pmXgVqu21sKr4BvJrADfalsFBqpxNkhQoXa-gUAlE3N0MfWOj3zsoAxmnXY5jicNb5hQddVUakzxKeVyKiVDMNvcbWzeG0bNtzozqTOjOvOjzvAREhNUxnBcQf6r_of6AliocXs</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>de Sousa Maia, Djalma Lucas</creator><creator>Côa, Francine</creator><creator>da Silva, Kelly Barbosa</creator><creator>Martins, Carlos Henrique Zanini</creator><creator>Franqui, Lidiane Silva</creator><creator>Fonseca, Leandro Carneiro</creator><creator>da Silva, Douglas Soares</creator><creator>de Souza Delite, Fabrício</creator><creator>Martinez, Diego Stéfani Teodoro</creator><creator>Alves, Oswaldo Luiz</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7496-7239</orcidid></search><sort><creationdate>2024</creationdate><title>Drying of graphene oxide: effects on red blood cells and protein corona formation</title><author>de Sousa Maia, Djalma Lucas ; Côa, Francine ; da Silva, Kelly Barbosa ; Martins, Carlos Henrique Zanini ; Franqui, Lidiane Silva ; Fonseca, Leandro Carneiro ; da Silva, Douglas Soares ; de Souza Delite, Fabrício ; Martinez, Diego Stéfani Teodoro ; Alves, Oswaldo Luiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological effects</topic><topic>Biomedical materials</topic><topic>Blood</topic><topic>Blood plasma</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Colloiding</topic><topic>Crystallography and Scattering Methods</topic><topic>Drying</topic><topic>Erythrocytes</topic><topic>Graphene</topic><topic>Hemolysis</topic><topic>Macrostructure</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidation</topic><topic>Polymer Sciences</topic><topic>Protein adsorption</topic><topic>Proteins</topic><topic>Room temperature</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Sousa Maia, Djalma Lucas</creatorcontrib><creatorcontrib>Côa, Francine</creatorcontrib><creatorcontrib>da Silva, Kelly Barbosa</creatorcontrib><creatorcontrib>Martins, Carlos Henrique Zanini</creatorcontrib><creatorcontrib>Franqui, Lidiane Silva</creatorcontrib><creatorcontrib>Fonseca, Leandro Carneiro</creatorcontrib><creatorcontrib>da Silva, Douglas Soares</creatorcontrib><creatorcontrib>de Souza Delite, Fabrício</creatorcontrib><creatorcontrib>Martinez, Diego Stéfani Teodoro</creatorcontrib><creatorcontrib>Alves, Oswaldo Luiz</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Sousa Maia, Djalma Lucas</au><au>Côa, Francine</au><au>da Silva, Kelly Barbosa</au><au>Martins, Carlos Henrique Zanini</au><au>Franqui, Lidiane Silva</au><au>Fonseca, Leandro Carneiro</au><au>da Silva, Douglas Soares</au><au>de Souza Delite, Fabrício</au><au>Martinez, Diego Stéfani Teodoro</au><au>Alves, Oswaldo Luiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drying of graphene oxide: effects on red blood cells and protein corona formation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024</date><risdate>2024</risdate><volume>59</volume><issue>2</issue><spage>577</spage><epage>592</epage><pages>577-592</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dried exploring two procedures: using a vacuum system at room temperature (GO-VD) and lyophilization (GO-LP). The nanomaterials were well characterized by microscopic (TEM, SEM, and AFM), spectroscopic (FTIR, UV–Vis, Raman, and
13
C NMR), and XRD techniques. The lyophilization process produced a nanomaterial with a three-dimensional porous macrostructure and the lowest oxidation degree. In contrast, the vacuum-drying process at room temperature provided a nanomaterial with a film-like macrostructure, presenting a higher oxidation degree as well as physicochemical properties more similar to those of GO-Disp. All of the nanomaterials adsorbed human plasma proteins; however, the protein adsorption was more selective for GO-Disp. GO-VD induced hemolysis of red blood cells in a lower concentration than GO-Disp and GO-LP, but the protein corona formation suppressed the hemolytic effect for all nanomaterials. Finally, our results indicate that the method applied to dry GO nanomaterials has a critical influence on their nanobiointeractions with cells and proteins, suggesting that more attention should be paid to biomedical applications and toxicological evaluations associated with these promising nanomaterials.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-09163-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7496-7239</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024, Vol.59 (2), p.577-592 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2913576965 |
source | Springer Nature |
subjects | Biological effects Biomedical materials Blood Blood plasma Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Colloiding Crystallography and Scattering Methods Drying Erythrocytes Graphene Hemolysis Macrostructure Materials for Life Sciences Materials Science Nanomaterials NMR Nuclear magnetic resonance Oxidation Polymer Sciences Protein adsorption Proteins Room temperature Solid Mechanics |
title | Drying of graphene oxide: effects on red blood cells and protein corona formation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drying%20of%20graphene%20oxide:%20effects%20on%20red%20blood%20cells%20and%20protein%20corona%20formation&rft.jtitle=Journal%20of%20materials%20science&rft.au=de%20Sousa%20Maia,%20Djalma%20Lucas&rft.date=2024&rft.volume=59&rft.issue=2&rft.spage=577&rft.epage=592&rft.pages=577-592&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-09163-2&rft_dat=%3Cproquest_cross%3E2913576965%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913576965&rft_id=info:pmid/&rfr_iscdi=true |