Loading…

Drying of graphene oxide: effects on red blood cells and protein corona formation

In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2024, Vol.59 (2), p.577-592
Main Authors: de Sousa Maia, Djalma Lucas, Côa, Francine, da Silva, Kelly Barbosa, Martins, Carlos Henrique Zanini, Franqui, Lidiane Silva, Fonseca, Leandro Carneiro, da Silva, Douglas Soares, de Souza Delite, Fabrício, Martinez, Diego Stéfani Teodoro, Alves, Oswaldo Luiz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413
cites cdi_FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413
container_end_page 592
container_issue 2
container_start_page 577
container_title Journal of materials science
container_volume 59
creator de Sousa Maia, Djalma Lucas
Côa, Francine
da Silva, Kelly Barbosa
Martins, Carlos Henrique Zanini
Franqui, Lidiane Silva
Fonseca, Leandro Carneiro
da Silva, Douglas Soares
de Souza Delite, Fabrício
Martinez, Diego Stéfani Teodoro
Alves, Oswaldo Luiz
description In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dried exploring two procedures: using a vacuum system at room temperature (GO-VD) and lyophilization (GO-LP). The nanomaterials were well characterized by microscopic (TEM, SEM, and AFM), spectroscopic (FTIR, UV–Vis, Raman, and 13 C NMR), and XRD techniques. The lyophilization process produced a nanomaterial with a three-dimensional porous macrostructure and the lowest oxidation degree. In contrast, the vacuum-drying process at room temperature provided a nanomaterial with a film-like macrostructure, presenting a higher oxidation degree as well as physicochemical properties more similar to those of GO-Disp. All of the nanomaterials adsorbed human plasma proteins; however, the protein adsorption was more selective for GO-Disp. GO-VD induced hemolysis of red blood cells in a lower concentration than GO-Disp and GO-LP, but the protein corona formation suppressed the hemolytic effect for all nanomaterials. Finally, our results indicate that the method applied to dry GO nanomaterials has a critical influence on their nanobiointeractions with cells and proteins, suggesting that more attention should be paid to biomedical applications and toxicological evaluations associated with these promising nanomaterials. Graphical abstract
doi_str_mv 10.1007/s10853-023-09163-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913576965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913576965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSfu1lvUj-hIIKeQzaZ1C3bpCZbsP_e1RW8eRjm8j7vDA9C54xeMkrrq8KoVoJQPk7DKkH4AZoxVQsiNRWHaEYp54TLih2jk1LWlFJVczZDL7d538UVTgGvst2-QwScPjsP1xhCADcUnCLO4HHbp-Sxg74v2EaPtzkN0EXsUk7R4pDyxg5diqfoKNi-wNnvnqO3-7vXxSNZPj88LW6WxPGaMqK4krp1TdCtrEB7pmXgVqu21sKr4BvJrADfalsFBqpxNkhQoXa-gUAlE3N0MfWOj3zsoAxmnXY5jicNb5hQddVUakzxKeVyKiVDMNvcbWzeG0bNtzozqTOjOvOjzvAREhNUxnBcQf6r_of6AliocXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913576965</pqid></control><display><type>article</type><title>Drying of graphene oxide: effects on red blood cells and protein corona formation</title><source>Springer Nature</source><creator>de Sousa Maia, Djalma Lucas ; Côa, Francine ; da Silva, Kelly Barbosa ; Martins, Carlos Henrique Zanini ; Franqui, Lidiane Silva ; Fonseca, Leandro Carneiro ; da Silva, Douglas Soares ; de Souza Delite, Fabrício ; Martinez, Diego Stéfani Teodoro ; Alves, Oswaldo Luiz</creator><creatorcontrib>de Sousa Maia, Djalma Lucas ; Côa, Francine ; da Silva, Kelly Barbosa ; Martins, Carlos Henrique Zanini ; Franqui, Lidiane Silva ; Fonseca, Leandro Carneiro ; da Silva, Douglas Soares ; de Souza Delite, Fabrício ; Martinez, Diego Stéfani Teodoro ; Alves, Oswaldo Luiz</creatorcontrib><description>In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dried exploring two procedures: using a vacuum system at room temperature (GO-VD) and lyophilization (GO-LP). The nanomaterials were well characterized by microscopic (TEM, SEM, and AFM), spectroscopic (FTIR, UV–Vis, Raman, and 13 C NMR), and XRD techniques. The lyophilization process produced a nanomaterial with a three-dimensional porous macrostructure and the lowest oxidation degree. In contrast, the vacuum-drying process at room temperature provided a nanomaterial with a film-like macrostructure, presenting a higher oxidation degree as well as physicochemical properties more similar to those of GO-Disp. All of the nanomaterials adsorbed human plasma proteins; however, the protein adsorption was more selective for GO-Disp. GO-VD induced hemolysis of red blood cells in a lower concentration than GO-Disp and GO-LP, but the protein corona formation suppressed the hemolytic effect for all nanomaterials. Finally, our results indicate that the method applied to dry GO nanomaterials has a critical influence on their nanobiointeractions with cells and proteins, suggesting that more attention should be paid to biomedical applications and toxicological evaluations associated with these promising nanomaterials. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-09163-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biological effects ; Biomedical materials ; Blood ; Blood plasma ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Colloiding ; Crystallography and Scattering Methods ; Drying ; Erythrocytes ; Graphene ; Hemolysis ; Macrostructure ; Materials for Life Sciences ; Materials Science ; Nanomaterials ; NMR ; Nuclear magnetic resonance ; Oxidation ; Polymer Sciences ; Protein adsorption ; Proteins ; Room temperature ; Solid Mechanics</subject><ispartof>Journal of materials science, 2024, Vol.59 (2), p.577-592</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413</citedby><cites>FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413</cites><orcidid>0000-0001-7496-7239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Sousa Maia, Djalma Lucas</creatorcontrib><creatorcontrib>Côa, Francine</creatorcontrib><creatorcontrib>da Silva, Kelly Barbosa</creatorcontrib><creatorcontrib>Martins, Carlos Henrique Zanini</creatorcontrib><creatorcontrib>Franqui, Lidiane Silva</creatorcontrib><creatorcontrib>Fonseca, Leandro Carneiro</creatorcontrib><creatorcontrib>da Silva, Douglas Soares</creatorcontrib><creatorcontrib>de Souza Delite, Fabrício</creatorcontrib><creatorcontrib>Martinez, Diego Stéfani Teodoro</creatorcontrib><creatorcontrib>Alves, Oswaldo Luiz</creatorcontrib><title>Drying of graphene oxide: effects on red blood cells and protein corona formation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dried exploring two procedures: using a vacuum system at room temperature (GO-VD) and lyophilization (GO-LP). The nanomaterials were well characterized by microscopic (TEM, SEM, and AFM), spectroscopic (FTIR, UV–Vis, Raman, and 13 C NMR), and XRD techniques. The lyophilization process produced a nanomaterial with a three-dimensional porous macrostructure and the lowest oxidation degree. In contrast, the vacuum-drying process at room temperature provided a nanomaterial with a film-like macrostructure, presenting a higher oxidation degree as well as physicochemical properties more similar to those of GO-Disp. All of the nanomaterials adsorbed human plasma proteins; however, the protein adsorption was more selective for GO-Disp. GO-VD induced hemolysis of red blood cells in a lower concentration than GO-Disp and GO-LP, but the protein corona formation suppressed the hemolytic effect for all nanomaterials. Finally, our results indicate that the method applied to dry GO nanomaterials has a critical influence on their nanobiointeractions with cells and proteins, suggesting that more attention should be paid to biomedical applications and toxicological evaluations associated with these promising nanomaterials. Graphical abstract</description><subject>Biological effects</subject><subject>Biomedical materials</subject><subject>Blood</subject><subject>Blood plasma</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Colloiding</subject><subject>Crystallography and Scattering Methods</subject><subject>Drying</subject><subject>Erythrocytes</subject><subject>Graphene</subject><subject>Hemolysis</subject><subject>Macrostructure</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidation</subject><subject>Polymer Sciences</subject><subject>Protein adsorption</subject><subject>Proteins</subject><subject>Room temperature</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSfu1lvUj-hIIKeQzaZ1C3bpCZbsP_e1RW8eRjm8j7vDA9C54xeMkrrq8KoVoJQPk7DKkH4AZoxVQsiNRWHaEYp54TLih2jk1LWlFJVczZDL7d538UVTgGvst2-QwScPjsP1xhCADcUnCLO4HHbp-Sxg74v2EaPtzkN0EXsUk7R4pDyxg5diqfoKNi-wNnvnqO3-7vXxSNZPj88LW6WxPGaMqK4krp1TdCtrEB7pmXgVqu21sKr4BvJrADfalsFBqpxNkhQoXa-gUAlE3N0MfWOj3zsoAxmnXY5jicNb5hQddVUakzxKeVyKiVDMNvcbWzeG0bNtzozqTOjOvOjzvAREhNUxnBcQf6r_of6AliocXs</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>de Sousa Maia, Djalma Lucas</creator><creator>Côa, Francine</creator><creator>da Silva, Kelly Barbosa</creator><creator>Martins, Carlos Henrique Zanini</creator><creator>Franqui, Lidiane Silva</creator><creator>Fonseca, Leandro Carneiro</creator><creator>da Silva, Douglas Soares</creator><creator>de Souza Delite, Fabrício</creator><creator>Martinez, Diego Stéfani Teodoro</creator><creator>Alves, Oswaldo Luiz</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7496-7239</orcidid></search><sort><creationdate>2024</creationdate><title>Drying of graphene oxide: effects on red blood cells and protein corona formation</title><author>de Sousa Maia, Djalma Lucas ; Côa, Francine ; da Silva, Kelly Barbosa ; Martins, Carlos Henrique Zanini ; Franqui, Lidiane Silva ; Fonseca, Leandro Carneiro ; da Silva, Douglas Soares ; de Souza Delite, Fabrício ; Martinez, Diego Stéfani Teodoro ; Alves, Oswaldo Luiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological effects</topic><topic>Biomedical materials</topic><topic>Blood</topic><topic>Blood plasma</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Colloiding</topic><topic>Crystallography and Scattering Methods</topic><topic>Drying</topic><topic>Erythrocytes</topic><topic>Graphene</topic><topic>Hemolysis</topic><topic>Macrostructure</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidation</topic><topic>Polymer Sciences</topic><topic>Protein adsorption</topic><topic>Proteins</topic><topic>Room temperature</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Sousa Maia, Djalma Lucas</creatorcontrib><creatorcontrib>Côa, Francine</creatorcontrib><creatorcontrib>da Silva, Kelly Barbosa</creatorcontrib><creatorcontrib>Martins, Carlos Henrique Zanini</creatorcontrib><creatorcontrib>Franqui, Lidiane Silva</creatorcontrib><creatorcontrib>Fonseca, Leandro Carneiro</creatorcontrib><creatorcontrib>da Silva, Douglas Soares</creatorcontrib><creatorcontrib>de Souza Delite, Fabrício</creatorcontrib><creatorcontrib>Martinez, Diego Stéfani Teodoro</creatorcontrib><creatorcontrib>Alves, Oswaldo Luiz</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Sousa Maia, Djalma Lucas</au><au>Côa, Francine</au><au>da Silva, Kelly Barbosa</au><au>Martins, Carlos Henrique Zanini</au><au>Franqui, Lidiane Silva</au><au>Fonseca, Leandro Carneiro</au><au>da Silva, Douglas Soares</au><au>de Souza Delite, Fabrício</au><au>Martinez, Diego Stéfani Teodoro</au><au>Alves, Oswaldo Luiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drying of graphene oxide: effects on red blood cells and protein corona formation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024</date><risdate>2024</risdate><volume>59</volume><issue>2</issue><spage>577</spage><epage>592</epage><pages>577-592</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In this work, we performed an integrated study on the physicochemical changes of graphene oxide (GO) during the drying process in terms of their biological effects on red blood cells (hemolysis) and interactions with human plasma (protein corona formation). GO in aqueous dispersion (GO-Disp) was dried exploring two procedures: using a vacuum system at room temperature (GO-VD) and lyophilization (GO-LP). The nanomaterials were well characterized by microscopic (TEM, SEM, and AFM), spectroscopic (FTIR, UV–Vis, Raman, and 13 C NMR), and XRD techniques. The lyophilization process produced a nanomaterial with a three-dimensional porous macrostructure and the lowest oxidation degree. In contrast, the vacuum-drying process at room temperature provided a nanomaterial with a film-like macrostructure, presenting a higher oxidation degree as well as physicochemical properties more similar to those of GO-Disp. All of the nanomaterials adsorbed human plasma proteins; however, the protein adsorption was more selective for GO-Disp. GO-VD induced hemolysis of red blood cells in a lower concentration than GO-Disp and GO-LP, but the protein corona formation suppressed the hemolytic effect for all nanomaterials. Finally, our results indicate that the method applied to dry GO nanomaterials has a critical influence on their nanobiointeractions with cells and proteins, suggesting that more attention should be paid to biomedical applications and toxicological evaluations associated with these promising nanomaterials. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-09163-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7496-7239</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024, Vol.59 (2), p.577-592
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2913576965
source Springer Nature
subjects Biological effects
Biomedical materials
Blood
Blood plasma
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Colloiding
Crystallography and Scattering Methods
Drying
Erythrocytes
Graphene
Hemolysis
Macrostructure
Materials for Life Sciences
Materials Science
Nanomaterials
NMR
Nuclear magnetic resonance
Oxidation
Polymer Sciences
Protein adsorption
Proteins
Room temperature
Solid Mechanics
title Drying of graphene oxide: effects on red blood cells and protein corona formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drying%20of%20graphene%20oxide:%20effects%20on%20red%20blood%20cells%20and%20protein%20corona%20formation&rft.jtitle=Journal%20of%20materials%20science&rft.au=de%20Sousa%20Maia,%20Djalma%20Lucas&rft.date=2024&rft.volume=59&rft.issue=2&rft.spage=577&rft.epage=592&rft.pages=577-592&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-09163-2&rft_dat=%3Cproquest_cross%3E2913576965%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2701-52548bc9f8b46e8d184f2a85b783d5fd941a3edb8a6f1e59caf4e5f7cd9ef0413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913576965&rft_id=info:pmid/&rfr_iscdi=true