Loading…
Stochastic online decisioning hyper-heuristic for high dimensional optimization
Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and...
Saved in:
Published in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2024, Vol.54 (1), p.544-564 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3 |
container_end_page | 564 |
container_issue | 1 |
container_start_page | 544 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 54 |
creator | Xia, Wang Hongwei, Ge Mingde, Zhao Yaqing, Hou Mingyang, Sun |
description | Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and propose a stochastic online decisioning hyper-heuristic framework, by considering multi-armed bandits with temporal reward estimation as our essential backbone. The multi-armed bandit problem simulates an agent which tries to balance exploration and exploitation simultaneously. Specifically, we introduce 1) a sliding time window to assign temporal credit for differing heuristics, and 2) boltzmann exploration for balancing the exploration-exploitation tradeoff. The proposed method is well suited for real-world applications, with flexible compatibility for versatile cost definitions, easy interfaces for heuristics as well as fewer hyper-parameters for consistent generalization performance. Experimental studies on the benchmarks results verify the efficacy and significance of the proposed framework, i.e., when considering three differing heuristics, our method reported consistently competitive performance on benchmark problems with a dimensionality up to 10,000. |
doi_str_mv | 10.1007/s10489-023-05185-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913751686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913751686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jke3OU4hcIPajgLexust2UdrMm20P99aZdwZuneQeedxgehK4J3BIAdZcI8FJjoAyDIKXAcIJmRCiGFdfqFM1AU46l1J_n6CKlNQAwBmSGlm9jaLoqjb4pQr_xvSusa3zyoff9quj2g4u4c7voj0gbYtH5VVdYv3X9gao2RRhGv_Xf1ZjXS3TWVpvkrn7nHH08PrwvnvHr8ullcf-KG0b0iJ2WLbctlXVTl7WzbW2tqkASKjiR3EFpcyQ5Su20UIJWpZUl5Y42XLSWzdHNdHeI4Wvn0mjWYRfzN8lQTZgSRJYyU3SimhhSiq41Q_TbKu4NAXMQZyZxJoszR3EGcolNpZThfuXi3-l_Wj83xHH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913751686</pqid></control><display><type>article</type><title>Stochastic online decisioning hyper-heuristic for high dimensional optimization</title><source>Springer Nature</source><creator>Xia, Wang ; Hongwei, Ge ; Mingde, Zhao ; Yaqing, Hou ; Mingyang, Sun</creator><creatorcontrib>Xia, Wang ; Hongwei, Ge ; Mingde, Zhao ; Yaqing, Hou ; Mingyang, Sun</creatorcontrib><description>Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and propose a stochastic online decisioning hyper-heuristic framework, by considering multi-armed bandits with temporal reward estimation as our essential backbone. The multi-armed bandit problem simulates an agent which tries to balance exploration and exploitation simultaneously. Specifically, we introduce 1) a sliding time window to assign temporal credit for differing heuristics, and 2) boltzmann exploration for balancing the exploration-exploitation tradeoff. The proposed method is well suited for real-world applications, with flexible compatibility for versatile cost definitions, easy interfaces for heuristics as well as fewer hyper-parameters for consistent generalization performance. Experimental studies on the benchmarks results verify the efficacy and significance of the proposed framework, i.e., when considering three differing heuristics, our method reported consistently competitive performance on benchmark problems with a dimensionality up to 10,000.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-023-05185-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Benchmarks ; Computer Science ; Exploitation ; Heuristic ; Machines ; Manufacturing ; Mechanical Engineering ; Multi-armed bandit problems ; Optimization ; Processes</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2024, Vol.54 (1), p.544-564</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3</citedby><cites>FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3</cites><orcidid>0000-0002-8937-1515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Wang</creatorcontrib><creatorcontrib>Hongwei, Ge</creatorcontrib><creatorcontrib>Mingde, Zhao</creatorcontrib><creatorcontrib>Yaqing, Hou</creatorcontrib><creatorcontrib>Mingyang, Sun</creatorcontrib><title>Stochastic online decisioning hyper-heuristic for high dimensional optimization</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and propose a stochastic online decisioning hyper-heuristic framework, by considering multi-armed bandits with temporal reward estimation as our essential backbone. The multi-armed bandit problem simulates an agent which tries to balance exploration and exploitation simultaneously. Specifically, we introduce 1) a sliding time window to assign temporal credit for differing heuristics, and 2) boltzmann exploration for balancing the exploration-exploitation tradeoff. The proposed method is well suited for real-world applications, with flexible compatibility for versatile cost definitions, easy interfaces for heuristics as well as fewer hyper-parameters for consistent generalization performance. Experimental studies on the benchmarks results verify the efficacy and significance of the proposed framework, i.e., when considering three differing heuristics, our method reported consistently competitive performance on benchmark problems with a dimensionality up to 10,000.</description><subject>Artificial Intelligence</subject><subject>Benchmarks</subject><subject>Computer Science</subject><subject>Exploitation</subject><subject>Heuristic</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Multi-armed bandit problems</subject><subject>Optimization</subject><subject>Processes</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jke3OU4hcIPajgLexust2UdrMm20P99aZdwZuneQeedxgehK4J3BIAdZcI8FJjoAyDIKXAcIJmRCiGFdfqFM1AU46l1J_n6CKlNQAwBmSGlm9jaLoqjb4pQr_xvSusa3zyoff9quj2g4u4c7voj0gbYtH5VVdYv3X9gao2RRhGv_Xf1ZjXS3TWVpvkrn7nHH08PrwvnvHr8ullcf-KG0b0iJ2WLbctlXVTl7WzbW2tqkASKjiR3EFpcyQ5Su20UIJWpZUl5Y42XLSWzdHNdHeI4Wvn0mjWYRfzN8lQTZgSRJYyU3SimhhSiq41Q_TbKu4NAXMQZyZxJoszR3EGcolNpZThfuXi3-l_Wj83xHH8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xia, Wang</creator><creator>Hongwei, Ge</creator><creator>Mingde, Zhao</creator><creator>Yaqing, Hou</creator><creator>Mingyang, Sun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8937-1515</orcidid></search><sort><creationdate>2024</creationdate><title>Stochastic online decisioning hyper-heuristic for high dimensional optimization</title><author>Xia, Wang ; Hongwei, Ge ; Mingde, Zhao ; Yaqing, Hou ; Mingyang, Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Benchmarks</topic><topic>Computer Science</topic><topic>Exploitation</topic><topic>Heuristic</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Multi-armed bandit problems</topic><topic>Optimization</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Wang</creatorcontrib><creatorcontrib>Hongwei, Ge</creatorcontrib><creatorcontrib>Mingde, Zhao</creatorcontrib><creatorcontrib>Yaqing, Hou</creatorcontrib><creatorcontrib>Mingyang, Sun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Wang</au><au>Hongwei, Ge</au><au>Mingde, Zhao</au><au>Yaqing, Hou</au><au>Mingyang, Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic online decisioning hyper-heuristic for high dimensional optimization</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2024</date><risdate>2024</risdate><volume>54</volume><issue>1</issue><spage>544</spage><epage>564</epage><pages>544-564</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and propose a stochastic online decisioning hyper-heuristic framework, by considering multi-armed bandits with temporal reward estimation as our essential backbone. The multi-armed bandit problem simulates an agent which tries to balance exploration and exploitation simultaneously. Specifically, we introduce 1) a sliding time window to assign temporal credit for differing heuristics, and 2) boltzmann exploration for balancing the exploration-exploitation tradeoff. The proposed method is well suited for real-world applications, with flexible compatibility for versatile cost definitions, easy interfaces for heuristics as well as fewer hyper-parameters for consistent generalization performance. Experimental studies on the benchmarks results verify the efficacy and significance of the proposed framework, i.e., when considering three differing heuristics, our method reported consistently competitive performance on benchmark problems with a dimensionality up to 10,000.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-023-05185-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8937-1515</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2024, Vol.54 (1), p.544-564 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2913751686 |
source | Springer Nature |
subjects | Artificial Intelligence Benchmarks Computer Science Exploitation Heuristic Machines Manufacturing Mechanical Engineering Multi-armed bandit problems Optimization Processes |
title | Stochastic online decisioning hyper-heuristic for high dimensional optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20online%20decisioning%20hyper-heuristic%20for%20high%20dimensional%20optimization&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Xia,%20Wang&rft.date=2024&rft.volume=54&rft.issue=1&rft.spage=544&rft.epage=564&rft.pages=544-564&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-023-05185-0&rft_dat=%3Cproquest_cross%3E2913751686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913751686&rft_id=info:pmid/&rfr_iscdi=true |