Loading…

Stochastic online decisioning hyper-heuristic for high dimensional optimization

Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2024, Vol.54 (1), p.544-564
Main Authors: Xia, Wang, Hongwei, Ge, Mingde, Zhao, Yaqing, Hou, Mingyang, Sun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3
cites cdi_FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3
container_end_page 564
container_issue 1
container_start_page 544
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 54
creator Xia, Wang
Hongwei, Ge
Mingde, Zhao
Yaqing, Hou
Mingyang, Sun
description Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and propose a stochastic online decisioning hyper-heuristic framework, by considering multi-armed bandits with temporal reward estimation as our essential backbone. The multi-armed bandit problem simulates an agent which tries to balance exploration and exploitation simultaneously. Specifically, we introduce 1) a sliding time window to assign temporal credit for differing heuristics, and 2) boltzmann exploration for balancing the exploration-exploitation tradeoff. The proposed method is well suited for real-world applications, with flexible compatibility for versatile cost definitions, easy interfaces for heuristics as well as fewer hyper-parameters for consistent generalization performance. Experimental studies on the benchmarks results verify the efficacy and significance of the proposed framework, i.e., when considering three differing heuristics, our method reported consistently competitive performance on benchmark problems with a dimensionality up to 10,000.
doi_str_mv 10.1007/s10489-023-05185-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913751686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913751686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jke3OU4hcIPajgLexust2UdrMm20P99aZdwZuneQeedxgehK4J3BIAdZcI8FJjoAyDIKXAcIJmRCiGFdfqFM1AU46l1J_n6CKlNQAwBmSGlm9jaLoqjb4pQr_xvSusa3zyoff9quj2g4u4c7voj0gbYtH5VVdYv3X9gao2RRhGv_Xf1ZjXS3TWVpvkrn7nHH08PrwvnvHr8ullcf-KG0b0iJ2WLbctlXVTl7WzbW2tqkASKjiR3EFpcyQ5Su20UIJWpZUl5Y42XLSWzdHNdHeI4Wvn0mjWYRfzN8lQTZgSRJYyU3SimhhSiq41Q_TbKu4NAXMQZyZxJoszR3EGcolNpZThfuXi3-l_Wj83xHH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913751686</pqid></control><display><type>article</type><title>Stochastic online decisioning hyper-heuristic for high dimensional optimization</title><source>Springer Nature</source><creator>Xia, Wang ; Hongwei, Ge ; Mingde, Zhao ; Yaqing, Hou ; Mingyang, Sun</creator><creatorcontrib>Xia, Wang ; Hongwei, Ge ; Mingde, Zhao ; Yaqing, Hou ; Mingyang, Sun</creatorcontrib><description>Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and propose a stochastic online decisioning hyper-heuristic framework, by considering multi-armed bandits with temporal reward estimation as our essential backbone. The multi-armed bandit problem simulates an agent which tries to balance exploration and exploitation simultaneously. Specifically, we introduce 1) a sliding time window to assign temporal credit for differing heuristics, and 2) boltzmann exploration for balancing the exploration-exploitation tradeoff. The proposed method is well suited for real-world applications, with flexible compatibility for versatile cost definitions, easy interfaces for heuristics as well as fewer hyper-parameters for consistent generalization performance. Experimental studies on the benchmarks results verify the efficacy and significance of the proposed framework, i.e., when considering three differing heuristics, our method reported consistently competitive performance on benchmark problems with a dimensionality up to 10,000.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-023-05185-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Benchmarks ; Computer Science ; Exploitation ; Heuristic ; Machines ; Manufacturing ; Mechanical Engineering ; Multi-armed bandit problems ; Optimization ; Processes</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2024, Vol.54 (1), p.544-564</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3</citedby><cites>FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3</cites><orcidid>0000-0002-8937-1515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Wang</creatorcontrib><creatorcontrib>Hongwei, Ge</creatorcontrib><creatorcontrib>Mingde, Zhao</creatorcontrib><creatorcontrib>Yaqing, Hou</creatorcontrib><creatorcontrib>Mingyang, Sun</creatorcontrib><title>Stochastic online decisioning hyper-heuristic for high dimensional optimization</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and propose a stochastic online decisioning hyper-heuristic framework, by considering multi-armed bandits with temporal reward estimation as our essential backbone. The multi-armed bandit problem simulates an agent which tries to balance exploration and exploitation simultaneously. Specifically, we introduce 1) a sliding time window to assign temporal credit for differing heuristics, and 2) boltzmann exploration for balancing the exploration-exploitation tradeoff. The proposed method is well suited for real-world applications, with flexible compatibility for versatile cost definitions, easy interfaces for heuristics as well as fewer hyper-parameters for consistent generalization performance. Experimental studies on the benchmarks results verify the efficacy and significance of the proposed framework, i.e., when considering three differing heuristics, our method reported consistently competitive performance on benchmark problems with a dimensionality up to 10,000.</description><subject>Artificial Intelligence</subject><subject>Benchmarks</subject><subject>Computer Science</subject><subject>Exploitation</subject><subject>Heuristic</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Multi-armed bandit problems</subject><subject>Optimization</subject><subject>Processes</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jke3OU4hcIPajgLexust2UdrMm20P99aZdwZuneQeedxgehK4J3BIAdZcI8FJjoAyDIKXAcIJmRCiGFdfqFM1AU46l1J_n6CKlNQAwBmSGlm9jaLoqjb4pQr_xvSusa3zyoff9quj2g4u4c7voj0gbYtH5VVdYv3X9gao2RRhGv_Xf1ZjXS3TWVpvkrn7nHH08PrwvnvHr8ullcf-KG0b0iJ2WLbctlXVTl7WzbW2tqkASKjiR3EFpcyQ5Su20UIJWpZUl5Y42XLSWzdHNdHeI4Wvn0mjWYRfzN8lQTZgSRJYyU3SimhhSiq41Q_TbKu4NAXMQZyZxJoszR3EGcolNpZThfuXi3-l_Wj83xHH8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xia, Wang</creator><creator>Hongwei, Ge</creator><creator>Mingde, Zhao</creator><creator>Yaqing, Hou</creator><creator>Mingyang, Sun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8937-1515</orcidid></search><sort><creationdate>2024</creationdate><title>Stochastic online decisioning hyper-heuristic for high dimensional optimization</title><author>Xia, Wang ; Hongwei, Ge ; Mingde, Zhao ; Yaqing, Hou ; Mingyang, Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Benchmarks</topic><topic>Computer Science</topic><topic>Exploitation</topic><topic>Heuristic</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Multi-armed bandit problems</topic><topic>Optimization</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Wang</creatorcontrib><creatorcontrib>Hongwei, Ge</creatorcontrib><creatorcontrib>Mingde, Zhao</creatorcontrib><creatorcontrib>Yaqing, Hou</creatorcontrib><creatorcontrib>Mingyang, Sun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Wang</au><au>Hongwei, Ge</au><au>Mingde, Zhao</au><au>Yaqing, Hou</au><au>Mingyang, Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic online decisioning hyper-heuristic for high dimensional optimization</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2024</date><risdate>2024</risdate><volume>54</volume><issue>1</issue><spage>544</spage><epage>564</epage><pages>544-564</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Most existing heuristic optimizers are found to be restricted to problems of moderate dimensionality, and their performance suffers when solving high-dimensional or large-scale optimization tasks. In this paper, we transform the high-dimensional optimization into online decision making problems and propose a stochastic online decisioning hyper-heuristic framework, by considering multi-armed bandits with temporal reward estimation as our essential backbone. The multi-armed bandit problem simulates an agent which tries to balance exploration and exploitation simultaneously. Specifically, we introduce 1) a sliding time window to assign temporal credit for differing heuristics, and 2) boltzmann exploration for balancing the exploration-exploitation tradeoff. The proposed method is well suited for real-world applications, with flexible compatibility for versatile cost definitions, easy interfaces for heuristics as well as fewer hyper-parameters for consistent generalization performance. Experimental studies on the benchmarks results verify the efficacy and significance of the proposed framework, i.e., when considering three differing heuristics, our method reported consistently competitive performance on benchmark problems with a dimensionality up to 10,000.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-023-05185-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8937-1515</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2024, Vol.54 (1), p.544-564
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2913751686
source Springer Nature
subjects Artificial Intelligence
Benchmarks
Computer Science
Exploitation
Heuristic
Machines
Manufacturing
Mechanical Engineering
Multi-armed bandit problems
Optimization
Processes
title Stochastic online decisioning hyper-heuristic for high dimensional optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20online%20decisioning%20hyper-heuristic%20for%20high%20dimensional%20optimization&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Xia,%20Wang&rft.date=2024&rft.volume=54&rft.issue=1&rft.spage=544&rft.epage=564&rft.pages=544-564&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-023-05185-0&rft_dat=%3Cproquest_cross%3E2913751686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e96f4df26bcb8bedfbdd7a061254164e08d125116469e95752a8d6824e2c45fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913751686&rft_id=info:pmid/&rfr_iscdi=true